Lambda Calculus – λ^{\rightarrow} , System F, and System F_{ω}

November 14, 2021

1 Simply Typed Lambda Calculus (λ^{\rightarrow})

Simply typed lambda calculus [3] is also traditionally called λ^{\rightarrow} , where the arrow \rightarrow indicates the centrality of function types $A \rightarrow B$. The elements of lambda calculus are divided into three "sorts":

- terms ranged over by metavariables M, N.
- types ranged over by metavariables A, B. We write M : A to say type M has type A.
- kinds ranged over by metavariable K. We write T : K to say type T has kind K.

The grammar of λ^{\rightarrow} is given by:

Kinds
$$K ::= *$$

Types $A, B ::= \iota \mid A \to B$
Raw terms $M, N ::= c \mid x \mid \lambda x^A. M \mid M N$

Kinds Kinds play little part in λ^{\rightarrow} , so their structure trivially consists just of * i.e. the kind of value types.

Types Types consist of base types ι such as integers and booleans, and functions where $A \to B$ represents a function taking a type A to a type B.

Terms Term variables are written x. Constants are represented by terms c. The term λx^A . M (also written $\lambda x : A.M$) is a function which when given some term of type A, binds it to the variable x and returns the term M. Lastly we have application M N which applies a term M to a term N.

Below we give the typing and kinding rules for simply typed lambda calculus, where Δ is a kinding context (environment) and Γ is a typing context (environment). We note that one can also choose not to distinguish between kinds and types, and use a single typing context Γ for both.

 $\Delta \vdash A:K$

constantfunction
$$\Delta \vdash \iota : *$$
 $\Delta \vdash A : *$ $\Delta \vdash B : *$ $\Delta \vdash \iota : *$ $\Delta \vdash A \rightarrow B : *$

Figure 1: Kinding Rules (λ^{\rightarrow})

$\Delta : \Gamma \vdash M : A$	Δ ;	Γ	\vdash	M	:	A
--------------------------------	------------	---	----------	---	---	---

constant	var	lambda	application	
	$x:A\in \Gamma$	$\Delta;\Gamma\cdot(x:A)\vdash M:B$	$\Delta;\Gamma\vdash M:A\to B$	$\Delta;\Gamma \vdash N:A$
$\overline{\Delta;\Gamma\vdash c:\iota}$	$\overline{\Delta;\Gamma\vdash x:A}$	$\overline{\Delta; \Gamma \vdash \lambda x^A. M : A \to B}$	$\Delta; \Gamma \vdash M N$: <i>B</i>

Figure 2: Typing Rules (λ^{\rightarrow})

2 Polymorphic Typed Lambda Calculus (System F)

System F [2, 3], also known as polymorphic lambda calculus or second-order lambda calculus, is a typed lambda calculus that extends simply-typed lambda calculus. It extends this by adding support for "type-to-term" abstraction, allowing polymorphism through the introduction of a mechanism of universal quantification over types. It therefore formalizes the notion of parametric polymorphism in programming languages. It is known as second-order lambda calculus because from a logical perspective, it can describe all functions that are provably total in second-order logic.

The grammar of System F is given by:

$$\begin{array}{ll} \text{Kinds} & K ::= * \\ \text{Types} & A, B ::= \iota \mid A \rightarrow B \mid \alpha \mid \forall \alpha^K. \ A \\ \text{Terms} & M, N ::= x \mid \lambda x^A. \ M \mid M \ N \mid \Lambda \alpha^K. \ M \mid M \ [A] \end{array}$$

Kinds Kinds remain the same, and all types have kind *.

Types We extend types A, B with (polymorphic) type variables α and universally quantified types $\forall \alpha^{\kappa}. A$ in which the bound type variable α of kind K may appear in A (we note that the only kind K in System F is *). An important point to note is that type variables α are only well-formed if they exist within the scope of which they are quantified by $\forall \alpha$. We note that in a polymorphic lambda calculus without a type scheme, such as this one, it is possible for type variables α to appear on their own without being bound to an inscope quantifier $\forall \alpha$ – therefore this grammar on its own does not ensure well-formed types.

Terms Lambda abstraction λx^A . M can now take variables x which have universally quantified types, e.g. $\forall \alpha. \alpha$. We extend terms with type abstraction $\Lambda \alpha^K$. M (also written $\Lambda \alpha : K$. M) whose parameter α is a type of kind K and returns a term M. We can then apply types A to type lambda abstractions M using type application M[A].

$$\Delta \vdash T : K$$

$$\begin{array}{c} \text{constant} \\ \hline \Delta \vdash \iota : * \end{array} \qquad \begin{array}{c} \begin{array}{c} \text{function} \\ \hline \Delta \vdash A : * & \Delta \vdash B : * \\ \hline \Delta \vdash A \to B : * \end{array} \qquad \begin{array}{c} \begin{array}{c} \text{forall} \\ \hline \Delta \cdot (\alpha : K) \vdash A : * \\ \hline \Delta \vdash \forall \alpha^K . A : * \end{array} \qquad \begin{array}{c} \text{type variable} \\ \hline \alpha : K \in \Delta \\ \hline \Delta \vdash \alpha : K \end{array}$$

Figure 3: Kinding Rules (System F)

$\Delta;\Gamma \vdash M:A$

$\mathop{\rm var}\limits_{x:A\in\Gamma}$	lambda abstraction $\Delta; \Gamma \cdot (x : A) \vdash M : B$	application $\Delta; \Gamma \vdash M : A \to B$	$\Delta;\Gamma\vdash N:A$
$\overline{\Delta;\Gamma\vdash x:A}$	$\overline{\Delta;\Gamma\vdash\lambda x^A}.M:A\to B$	$\Delta; \Gamma \vdash M$	N:B
type abstraction $\Delta \cdot (\alpha : K); \Gamma \vdash M : A$		type application $\Delta; \Gamma \vdash M : \forall \alpha^{K}.A \qquad \Delta \vdash$	B:K
$\overline{\Delta;\Gamma\vdash\Lambda\alpha^{K}.M:\forall\alpha^{K}.A}$		$\Delta; \Gamma \vdash M[B] : A[\alpha \mapsto B]$	B]

Figure 4: Typing Rules (System F)

3 Higher-Order Polymorphic Typed Lambda Calculus (System F_{ω})

System F_{ω} [3, 1], also known as higher-order polymorphic lambda calculus, extends System F with richer kinds and adds type-level lambda-abstraction and application.

Kinds
$$K ::= * \mid K_1 \to K_2$$

Types $A, B ::= \iota \mid A \to B \mid \forall \alpha^K. A \mid \alpha \mid \lambda \alpha^K. A \mid A B$
Terms $M, N ::= x \mid \lambda x^A. M \mid M N \mid \Lambda \alpha^K. M \mid M [A]$

Kinds In System F, the structure of kinds has been trivial, limited to a single kind * to which all type expressions belonged. In System F_{ω} , we enrich the set of kinds with an operator \rightarrow such that if K_1 and K_2 are kinds, then $K_1 \rightarrow K_2$ is a kind. This allows us to construct kinds which contain type operators/constructors and higher-order forms of these, such as product \times . We are then free to extend this calculus with arbitrary custom kind constants.

Types The set of types in System F_{ω} additionally includes type constructors i.e. type-level lambdaabstraction $\lambda \alpha^{K} A$, which when provided a type of kind K, binds this to the type variable α and returns the type A. Type constructors A can be applied to a type B to form a new type AB. Universal quantification $\forall \alpha^{K} A$ now requires the bound type variable α to be annotated by a kind K, meaning types can be parameterised by polymorphic type variables of any kind K.

Terms Although the terms in System F_{ω} remain the same as System F, the term for type abstraction $(\Lambda \alpha^K, M)$ can now take types with kinds other than *.

 $\Delta \vdash T:K$

constant	function $\Delta \vdash A: *$	$\Delta \vdash B: \ast$	forall $\Delta \cdot (\alpha : K) \vdash A :$	$* \qquad \qquad \ \ \ \ \ \ \ \ \ \ \ \$
$\overline{\Delta \vdash \iota: \ast}$	$\Delta \vdash A$ -	$\rightarrow B:*$	$\Delta \vdash \forall \alpha^K. A: *$	$\overline{\Delta \vdash \alpha : K}$
51	e constructor $\mathbf{A} \cdot (\alpha : K_1) \vdash A : K_1$	Z 2	type constructor appl $\Delta \vdash A : K_1 \to K_2$	
$\Delta \vdash \lambda \alpha^{K_1} . A : K_1 \to K_2$		$\Delta \vdash A B:$	$\overline{K_2}$	

Figure 5: Kinding Rules (System F_{ω})

$\Delta;\Gamma\vdash M:A$

var	lambda abstraction	application	
$x:A\in \Gamma$	$\Delta;\Gamma\cdot(x:A)\vdash M:B$	$\Delta;\Gamma\vdash M:A\to B$	$\Delta;\Gamma\vdash N:A$
$\overline{\Delta;\Gamma\vdash x:A}$	$\overline{\Delta; \Gamma \vdash \lambda x^A. M : A \to B}$	$\Delta; \Gamma \vdash M$.	N:B
type abs	traction	type application	

	type application
$\Delta \cdot (\alpha:K); \Gamma \vdash M: A$	$\Delta; \Gamma \vdash M : \forall \alpha^K . A \qquad \Delta \vdash B : K$
$\overline{\Delta; \Gamma \vdash \Lambda \alpha^{K}. M : \forall \alpha^{K}. A}$	$\Delta; \Gamma \vdash M \left[B \right] : A[\alpha \mapsto B]$

Figure 6: Typing Rules (System F_{ω})

References

- Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press, 2002. URL: http://kevinluo.net/books/book_Types%20and%20Programming%20Languages%20-%20Benjamin%20C.%20Pierce.pdf.
- [2] Peter Selinger. Lecture Notes on the Lambda Calculus. https://www.irif.fr/~mellies/ mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf. Accessed: 2021-08-18.
- [3] Cambridge University. Lambda Calculus Lecture Notes. https://www.cl.cam.ac.uk/ teaching/1415/L28/lambda.pdf. Accessed: 2021-08-18.