
Lambda Calculus – λ→, System F, and System Fω

November 14, 2021

1 Simply Typed Lambda Calculus (λ→)

Simply typed lambda calculus [3] is also traditionally called λ→, where the arrow → indicates the
centrality of function types A→ B. The elements of lambda calculus are divided into three “sorts”:

• terms ranged over by metavariables M,N .

• types ranged over by metavariables A,B. We write M : A to say type M has type A.

• kinds ranged over by metavariable K. We write T : K to say type T has kind K.

The grammar of λ→ is given by:

Kinds K ::= ∗
Types A,B ::= ι | A→ B

Raw terms M,N ::= c | x | λxA.M |M N

Kinds Kinds play little part in λ→, so their structure trivially consists just of ∗ i.e. the kind of
value types.
Types Types consist of base types ι such as integers and booleans, and functions where A → B
represents a function taking a type A to a type B.
Terms Term variables are written x. Constants are represented by terms c. The term λxA.M (also
written λx : A.M) is a function which when given some term of type A, binds it to the variable x
and returns the term M . Lastly we have application M N which applies a term M to a term N .

Below we give the typing and kinding rules for simply typed lambda calculus, where ∆ is a kinding
context (environment) and Γ is a typing context (environment). We note that one can also choose
not to distinguish between kinds and types, and use a single typing context Γ for both.

∆ ` A : K

constant

∆ ` ι : ∗

function
∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗

Figure 1: Kinding Rules (λ→)

∆; Γ `M : A

constant

∆; Γ ` c : ι

var
x : A ∈ Γ

∆; Γ ` x : A

lambda
∆; Γ · (x : A) `M : B

∆; Γ ` λxA.M : A→ B

application
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

Figure 2: Typing Rules (λ→)

1

2 Polymorphic Typed Lambda Calculus (System F)

System F [2, 3], also known as polymorphic lambda calculus or second-order lambda calculus, is a
typed lambda calculus that extends simply-typed lambda calculus. It extends this by adding support
for “type-to-term” abstraction, allowing polymorphism through the introduction of a mechanism of
universal quantification over types. It therefore formalizes the notion of parametric polymorphism
in programming languages. It is known as second-order lambda calculus because from a logical
perspective, it can describe all functions that are provably total in second-order logic.

The grammar of System F is given by:

Kinds K ::= ∗
Types A,B ::= ι | A→ B | α | ∀αK . A

Terms M,N ::= x | λxA.M |M N | ΛαK .M |M [A]

Kinds Kinds remain the same, and all types have kind ∗.
Types We extend types A,B with (polymorphic) type variables α and universally quantified types
∀ακ. A in which the bound type variable α of kind K may appear in A (we note that the only kind
K in System F is ∗). An important point to note is that type variables α are only well-formed if
they exist within the scope of which they are quantified by ∀α. We note that in a polymorphic
lambda calculus without a type scheme, such as this one, it is possible for type variables α to appear
on their own without being bound to an inscope quantifier ∀α – therefore this grammar on its own
does not ensure well-formed types.
Terms Lambda abstraction λxA.M can now take variables x which have universally quantified
types, e.g. ∀α. α. We extend terms with type abstraction ΛαK .M (also written Λα : K.M) whose
parameter α is a type of kind K and returns a term M . We can then apply types A to type lambda
abstractions M using type application M [A].

∆ ` T : K

constant

∆ ` ι : ∗

function
∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗

forall
∆ · (α : K) ` A : ∗

∆ ` ∀αK . A : ∗

type variable
α : K ∈ ∆

∆ ` α : K

Figure 3: Kinding Rules (System F)

∆; Γ `M : A

var
x : A ∈ Γ

∆; Γ ` x : A

lambda abstraction
∆; Γ · (x : A) `M : B

∆; Γ ` λxA.M : A→ B

application
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

type abstraction
∆ · (α : K); Γ `M : A

∆; Γ ` ΛαK .M : ∀αK . A

type application

∆; Γ `M : ∀αK .A ∆ ` B : K

∆; Γ `M [B] : A[α 7→ B]

Figure 4: Typing Rules (System F)

3 Higher-Order Polymorphic Typed Lambda Calculus (Sys-
tem Fω)

System Fω [3, 1], also known as higher-order polymorphic lambda calculus, extends System F with
richer kinds and adds type-level lambda-abstraction and application.

3.0.1 System Fω

Kinds K ::= ∗ | K1 → K2

Types A,B ::= ι | A→ B | ∀αK . A | α | λαK . A | AB
Terms M,N ::= x | λxA.M |M N | ΛαK .M |M [A]

Kinds In System F, the structure of kinds has been trivial, limited to a single kind ∗ to which all
type expressions belonged. In System Fω, we enrich the set of kinds with an operator → such that
if K1 and K2 are kinds, then K1 → K2 is a kind. This allows us to construct kinds which contain
type operators/constructors and higher-order forms of these, such as product ×. We are then free
to extend this calculus with arbitrary custom kind constants.
Types The set of types in System Fω additionally includes type constructors i.e. type-level lambda-
abstraction λαK . A, which when provided a type of kind K, binds this to the type variable α and
returns the type A. Type constructors A can be applied to a type B to form a new type AB.
Universal quantification ∀αK . A now requires the bound type variable α to be annotated by a kind
K, meaning types can be parameterised by polymorphic type variables of any kind K.
Terms Although the terms in System Fω remain the same as System F, the term for type abstraction
(ΛαK .M) can now take types with kinds other than ∗.

∆ ` T : K

constant

∆ ` ι : ∗

function
∆ ` A : ∗ ∆ ` B : ∗

∆ ` A→ B : ∗

forall
∆ · (α : K) ` A : ∗

∆ ` ∀αK . A : ∗

type variable
α : K ∈ ∆

∆ ` α : K

type constructor
∆ · (α : K1) ` A : K2

∆ ` λαK1 . A : K1 → K2

type constructor application
∆ ` A : K1 → K2 ∆ ` B : K1

∆ ` AB : K2

Figure 5: Kinding Rules (System Fω)

∆; Γ `M : A

var
x : A ∈ Γ

∆; Γ ` x : A

lambda abstraction
∆; Γ · (x : A) `M : B

∆; Γ ` λxA.M : A→ B

application
∆; Γ `M : A→ B ∆; Γ ` N : A

∆; Γ `M N : B

type abstraction
∆ · (α : K); Γ `M : A

∆; Γ ` ΛαK .M : ∀αK . A

type application

∆; Γ `M : ∀αK .A ∆ ` B : K

∆; Γ `M [B] : A[α 7→ B]

Figure 6: Typing Rules (System Fω)

References

[1] Benjamin C Pierce and C Benjamin. Types and programming languages. MIT press, 2002. url:
http : / / kevinluo . net / books / book _ Types % 20and % 20Programming % 20Languages % 20 -

%20Benjamin%20C.%20Pierce.pdf.

[2] Peter Selinger. Lecture Notes on the Lambda Calculus. https://www.irif.fr/~mellies/
mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf. Accessed: 2021-08-18.

[3] Cambridge University. Lambda Calculus Lecture Notes. https : / / www . cl . cam . ac . uk /

teaching/1415/L28/lambda.pdf. Accessed: 2021-08-18.

http://kevinluo.net/books/book_Types%20and%20Programming%20Languages%20-%20Benjamin%20C.%20Pierce.pdf
http://kevinluo.net/books/book_Types%20and%20Programming%20Languages%20-%20Benjamin%20C.%20Pierce.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/biblio/Selinger-Lambda-Calculus-Notes.pdf
https://www.cl.cam.ac.uk/teaching/1415/L28/lambda.pdf
https://www.cl.cam.ac.uk/teaching/1415/L28/lambda.pdf

	Simply Typed Lambda Calculus ()
	Polymorphic Typed Lambda Calculus (System F)
	Higher-Order Polymorphic Typed Lambda Calculus (System F)
	System F

