Embedding Probabilistic Models in Haskell!

In a probabilistic language, we have access to two additional primitive operations:

Given these operations, we can capture the following notions:

We can categorize probabilistic programming languages (PPLs) into:

1. Query Based Languages

2. Model Based Languages

Query-Based PPLs

Probabilistic Query

```
def query(...):
    ...
    sample(dist)
    ...
    observe(dist, y)
    ...
```

Queries are functions where we can **explicitly** call sample and observe

Benefits of query-based PPLs:

They are flexible

They are modular - they can be combined and sometimes even composed

Disadvantage of query-based PPLs

They can only express **specific** interpretations of models

Query-Based PPLs

Query for Simulation (Monad Bayes)

linRegr :: MonadSample m
=> Double -> Double -> Double -> m Double
linRegr x μ c σ = do
y <- normal (μ * x + c) σ
return y</pre>

Query for Inference (Monad Bayes)

```
linRegr :: MonadSample m
=> Double -> Double -> m (Double, Double, Double)
linRegr x y = do

    µ <- normal 0 3
    c <- normal 0 2
    σ <- uniform 1 3
    observe $ normalPdf (µ* x + c) σ y
    return (µ , c , σ)</pre>
```

Problem:

- 1) We can't capture a universal description of a model
- 2) We can't simply evolve a model, we must evolve and maintain all queries that describe it.

Query-Based PPLs

Query for Simulation (WebPPL)

```
var linearRegr = function(mu, sigma, x) {
  var y = sample(Normal(mu * x, sigma))
  return y
}
var linearRegrModel = function () {
  linearRegr({mu = 0, sigma = 1, x = 4})
}
```

Query for Simulation (Anglican)

```
(defquery linear-regression [mu-prior, x]
(let [mu (sample mu-prior)
      sigma (sample sigma-prior)
      y (reduce + (map (* mu) x)) sigma)]
{:output y)})
```

Query for Inference (WebPPL)

```
var linearRegr = function(mu, sigma, x, data_y) {
  observe(Normal(mu * x, sigma), data_y)
  return (mu, sigma)
}
var linearRegrModel = function () {
  linearRegr({mu = 0, sigma = 1, x = 4, data_y = 3})
}
var params = Infer({ model: linearRegrModel })
```

Query for Inference (Anglican)

```
(defquery linear-regression [mu-prior data_y x]
(let [mu (sample mu-prior)
    sigma (sample sigma-prior)
    predictive (fn [x] (normal (reduce + (map (* mu) x)) sigma))]
    (observe (predictive x) data_y)
    {:mu mu :sigma sigma :predictor (predictive x)}))
```

Model-Based PPLs

Probabilistic Model

```
@model function linRegr(µ, c, σ, x, y)
        µ ~ Normal(0, 3)
        c ~ Normal(0, 2)
        σ ~ Uniform(1, 3)
        y ~ Normal(µ * x + c, σ)
        end
```

- Models are a description of relationships between random variables
- We do *not* explicitly sample or observe

Benefits of model-based PPLs:

We can interpret a model for simulation *and* inference

Disadvantage of query-based PPLs

Models are not first-class citizens

A Specification of Sampled vs Observed variables

(~) is observe whenever observed data is provided for a random variable.(~) is sample in all other cases.

We implement a probabilistic language in Haskell where:

- Models are interpretable for simulation and inference
- Models are first-class citizens they can be combined and composed

To achieve this, we acknowledge the following ideals:

Ideal 1. Models should be syntactic descriptions of a data generative process.

a. Syntax for sample and observe should be unified.

Ideal 2. We need a clean mechanism of associating observed data to random variables.

- a. Observed data should only be provided when absolutely necessary
- b. Observed data should not be passed as function arguments

Ideal 3. Simulation and inference should be higher-order functions which assign semantics to models.

Ideal 1. Models should be syntactic descriptions of a data generative process.

a. Syntax for sample and observe should be unified.

Solution 1. Extensible Algebraic Effects

Algebraic effects allow us to syntactically construct programs as trees where its nodes are shaped by some effectful operations.

Free op k Free op k Pure a

Distribution Effects, for unifying the syntax of sampling and observing

newtype Model	ts a = M	Iodel					
runModel ::	(Member	Dist	ts)	=>	Freer	ts	

Ideal 2. We need a clean mechanism of associating observed data to random variables.

- a. Observed data should only be provided when absolutely necessary
- b. Observed data should not be passed as function arguments

Solution 2. Extensible Environments

Extensible environments represent the observed variables of a model.

#μ @= [0.2] <: #σ @= [1.5] <: #y @= [] <: nil

We can specify the observed variables of a model via a type-class constraint: Observable env "y" Double => ...

And then reference them inside a model:

y <- normal 0 1 #y

Affine Reader Effects

```
We could use a Reader effect ...
```

But we can only sensibly call this once:

```
y <- normal 0 1 #y
```

Instead we use an Affine Reader effect, which consumes read values.

Example: Hidden Markov Model

```
observationModel :: (Observable env "y" Int)
 y<sub>i+1</sub> <- observationModel observation_p x<sub>i+1</sub>
```

```
hmmNSteps :: (Observable s "y" Int)
    => Double -> Double -> Int -> (Int -> Model env ts Int)
hmmNSteps transition_p observation_p n =
  foldl (>=>) return (replicate n (hmm transition_p observation p))
```


Example: Topic Model

```
wordDist :: Observable env "w" String
=> [String] -> [Double] -> Model env ts String
wordDist vocab ps = categorical (zip vocab ps) #w
```

```
topicWordPrior :: Observable env "φ" [Double]
=> [String] -> Model env ts [Double]
topicWordPrior vocab
= dirichlet (replicate (length vocab) 1) #φ
```

```
- diffentet (repricate (rengen vocab) r) \#\psi
```

```
docTopicPrior :: Observable env "0" [Double]
=> Int -> Model env ts [Double]
docTopicPrior n topics = dirichlet (replicate n topics 1) #0
```


Ideal 3. Simulation and inference should be higher-order functions which assign semantics to models.

Theoretically, every algorithm could be implemented in terms of handlers for sample and observe.

Complex algorithms are better implemented via further program transformations.

We have used this approach to demonstrate:

- Simulation
- Likelihood Weighting
- Metropolis-Hastings