
Embedding 

Probabilistic Models in 

Haskell!



In a probabilistic language, we have access to two additional primitive operations:

x <- sample(dist) observe(dist, y)
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Given these operations, we can capture the following notions:  



We can categorize probabilistic programming languages (PPLs) into:

1. Query Based Languages
2. Model Based Languages



Query-Based PPLs

Probabilistic Query

def query(...):
  ...
  sample(dist)
  ...
  observe(dist, y)
  ... 

Queries are functions where we can explicitly call sample and observe

Benefits of query-based PPLs:

They are flexible

They are modular - they can be combined and sometimes even composed

Disadvantage of query-based PPLs

They can only express specific interpretations of models



Query-Based PPLs

Query for Simulation (Monad Bayes) Query for Inference (Monad Bayes)

linRegr :: MonadSample m

  => Double -> Double -> Double -> Double -> m Double

linRegr x μ c σ = do

 y <- normal (μ * x + c) σ

 return y

linRegr :: MonadSample m

 => Double −> Double −> m (Double, Double, Double)

linRegr x y = do

 μ <− normal 0 3

 c <− normal 0 2

 σ <− uniform 1 3

 observe $ normalPdf (μ ∗ x + c) σ y

 return (μ , c , σ)

Problem:

1) We can’t capture a universal description of a model

2) We can’t simply evolve a model, we must evolve and maintain all queries that describe it.



Query-Based PPLs

Query for Simulation (WebPPL) Query for Inference (WebPPL)

var linearRegr = function(mu, sigma, x) {

 var y = sample(Normal(mu * x, sigma))

 return y

}

var linearRegrModel = function () {

 linearRegr({mu = 0, sigma = 1, x = 4})

}

var linearRegr = function(mu, sigma, x, data_y) {

 observe(Normal(mu * x, sigma), data_y)

 return (mu, sigma)

}

var linearRegrModel = function () {

 linearRegr({mu = 0, sigma = 1, x = 4, data_y = 3})

}

var params = Infer({ model: linearRegrModel })

Query for Inference (Anglican)

(defquery linear-regression [mu-prior data_y x]

 (let [mu    (sample mu-prior)

       sigma (sample sigma-prior)

       predictive (fn [x] (normal (reduce + (map (* mu) x)) sigma))]

       (observe (predictive x) data_y)

   {:mu mu :sigma sigma :predictor (predictive x)}))

Query for Simulation (Anglican)

(defquery linear-regression [mu-prior, x]

 (let [mu    (sample mu-prior)

       sigma (sample sigma-prior)

       y (reduce + (map (* mu) x)) sigma)]

   {:output y)}))



Model-Based PPLs

Probabilistic Model

@model function linRegr(μ, c, σ, x, y)

     μ ~ Normal(0, 3)

     c ~ Normal(0, 2)

     σ ~ Uniform(1, 3)

     y ~ Normal(μ * x + c, σ)

  end

● Models are a description of relationships between random variables

Benefits of model-based PPLs:

We can interpret a model for simulation and inference

Disadvantage of query-based PPLs

Models are not first-class citizens

● We do not explicitly sample or observe

A Specification of Sampled vs Observed variables

(~) is observe whenever observed data is provided for a random variable.

(~) is sample in all other cases. 



Composable, Modular, Probabilistic Models

We implement a probabilistic language in Haskell where:

● Models are interpretable for simulation and inference

● Models are first-class citizens - they can be combined and composed

To achieve this, we acknowledge the following ideals:

Ideal 1.   Models should be syntactic descriptions of a data generative process. 

Ideal 2.   We need a clean mechanism of associating observed data to random variables.

Ideal 3.   Simulation and inference should be higher-order functions which assign semantics to models.

a. Syntax for sample and observe should be unified.

a. Observed data should only be provided when absolutely necessary

b. Observed data should not be passed as function arguments



Composable, Modular, Probabilistic Models

Solution 1. Extensible Algebraic Effects

Distribution Effects, for unifying the syntax of sampling and observing

 data Dist a where

  NormalDist        :: Double -> Double     -> Maybe Double -> Dist Double

  BinomialDist      :: Int    -> Double     -> Maybe Int    -> Dist Int

Free op k

Free op k

Pure a

Ideal 1.   Models should be syntactic descriptions of a data generative process. 

a. Syntax for sample and observe should be unified.

Algebraic effects allow us to syntactically construct programs as trees where its 

nodes are shaped by some effectful operations. 

Free (NormalDist μ σ y) k

Free (Binomial n p y) k

Pure a

newtype Model ts a = Model {  

  runModel :: (Member Dist ts) => Freer ts a 

}



Composable, Modular, Probabilistic Models

Solution 2.

Affine Reader Effects

Ideal 2.   We need a clean mechanism of associating observed data to random variables.

a. Observed data should only be provided when absolutely necessary

b. Observed data should not be passed as function arguments

Extensible Environments

Extensible environments represent the observed variables of a model.

#μ @= [0.2] <: #σ @= [1.5] <: #y @= [] <: nil

We could use a Reader effect …

But we can only sensibly call this once:

    y <- normal 0 1 #y

Instead we use an Affine Reader effect, which consumes read values.

We can specify the observed variables of a model via a type-class constraint:

Observable env "y" Double => ...

And then reference them inside a model:

  y <- normal 0 1 #y

newtype Model env ts a = Model { 

   runModel :: (Member Dist ts,

                Member AffReader env ts) => Freer ts a }



Example: Hidden Markov Model

  observationModel :: (Observable env "y" Int) 

=> Double -> Int -> Model env ts Int

  observationModel observation_p x = do

   binomial x observation_p #y

  hmm :: (Observable s "y" Int) 

=> Double -> Double -> Int -> Model env ts Int

  hmm transition_p observation_p xi = do

   xi+1 <- transitionModel transition_p xi
   yi+1 <- observationModel observation_p xi+1
   return xi+1

  hmmNSteps :: (Observable s "y" Int) 

=> Double -> Double -> Int -> (Int -> Model env ts Int)

  hmmNSteps transition_p observation_p n =

   foldl (>=>) return (replicate n (hmm transition_p observation_p))

transitionModel :: Double -> Int -> Model env ts Int

transitionModel transition_p xi = do

 dX <- bernoulli’ transition_p

 let xi+1 = xi + dX

 return xi+1

Composable, Modular, Probabilistic Models



Example: Topic Model

Composable, Modular, Probabilistic Models

wordDist :: Observable env "w" String 

 => [String] -> [Double] -> Model env ts String

wordDist vocab ps = categorical (zip vocab ps) #w

topicWordPrior :: Observable env "φ" [Double]

 => [String] -> Model env ts [Double]

topicWordPrior vocab

 = dirichlet (replicate (length vocab) 1) #φ

docTopicPrior :: Observable env "θ" [Double]

 => Int -> Model env ts [Double]

docTopicPrior n_topics = dirichlet (replicate n_topics 1) #θ

documentDist :: (Observables env '["φ", "θ"] [Double],

                 Observable  env "w" String)

 => [String] -> Int -> Int -> Model env ts [String]

documentDist vocab n_topics n_words = do

 topic_word_ps <- replicateM n_topics $ topicWordPrior vocab

 doc_topic_ps  <- docTopicPrior n_topics

 replicateM n_words (do  z <- discrete doc_topic_ps

                         let word_ps = topic_word_ps !! z

                         wordDist vocab word_ps)



Composable, Modular, Probabilistic Models

Solution 3.

Ideal 3.   Simulation and inference should be higher-order functions which assign semantics to models.

Composable Program Transformations via Effect Handlers

normal mu std #x

bernoulli p #y

runAffineReader 
(#x = [], #y = [True])

runDist

Theoretically, every algorithm could be implemented in terms of handlers for sample and observe.

We have used this approach to demonstrate:

- Simulation

- Likelihood Weighting

- Metropolis-Hastings 

NormalDist mu std Nothing

BernoulliDist p (Just True)

Sample (NormalDist mu std)

Observe 
(BernoulliDist p, True)

Complex algorithms are better implemented via further program transformations.


