
Applications Of Recursion Schemes On
Neural Networks
Minh Nguyen
Department of Computer Science, University of Bristol
mn15104@bristol.ac.uk Supervisor: Dr. Nicolas Wu

Motivation
There are multiple narratives to which deep learning can be understood. Neuroscience draws analogies to biology. A representative narrative focuses on
the transformations of data and the manifold hypothesis. The probabilistic narrative interprets neural networks as finding latent variables. Although
these perspectives aren’t mutually exclusive, they present very different ways of expressing deep learning. An uninvestigated narrative is the relationship
between neural networks and functional programming. This project discusses how the structure and learning process of neural networks can be represented
with recursion schemes.
Specifically, I demonstrate implementations of:

• Fully Connected Networks
• Convolutional Networks
• Deep LSTM Networks

Neural Networks
Neural networks are represented by a graph of
nodes and edges containing hyper-parameters.
The simplest models are feed-forward networks,
where subsets of nodes exclusively belong to in-
dividual layers which are connected side-by-side.

The process of learning a neural network consists
of two stages: forward propagation and back
propagation.

Recursion Schemes
Nested structures are very common in programming environments. However, with each recursive
structure, any corresponding recursive functions we define must be type-specific to it. This prompts
the need to have a generalisation over recursive traversals which abstracts away recursion from the
data type. By decoupling how a function recurses over data from what the function actually does,
we reduce cognitive overhead and can focus on the core behaviour of the function. This entire notion
is captured through recursion schemes.

Catamorphisms

Folds allows us to evaluate recursive data struc-
tures without having to write recursive functions.
Catamorphisms are a generalisation over folds,
such that we don’t have to be type specific to the
data type.

Anamorphisms

Unfolds let us take a seed value and generate
type-specific recursive data structures without
defining recursive functions. Anamorphisms
are a generalisation over unfolds such that we
don’t have to be type specific to the data type.

Forward And Back Propagation As Catamorphisms And Anamorphisms
• Forward propagation consists of passing an input to the first layer of a neural net, with every
layer performing a computation using its hyperparameters to produce an output which is propagated
to the next layer. This eventually leads to an output. Evaluating a neural network to acquire an
output is what a fold essentially achieves. If we can fold over a neural network to get an output,
then this can be modelled as a catamorphism.

We can in fact visualise a neural network as a list of layers, where we fold over them with a function
which performs forward propagation between each layer.

• Backward propagation traverses in the opposite direction. From the last layer, every layer
performs a computation using its output and back propagated variables from the next layer to
update its hyperparameters. Using the output as a seed value to generate an updated neural
network is what an unfold essentially achieves. If we can unfold over an output to get a neural
network, then this can be modelled as an anamorphism.

• The composition of a catamorphism and an anamorphism is called a metamorphism; hence
updating a neural net with a given input sample can be modelled by a metamorphism.

Existing Work
Currently there exists no formal research
recognising recursion schemes or functional
programming as being an innate behaviour of
neural networks - the only two acknowledge-
ments are presented as hypotheses.

One briefly compares the recursive neural
network (RNN) to a catamorphism, stating “the
connection to category theory has only recently
been recognised, and detailed analysis in this
context has not yet been carried out to the best
of our knowledge.”

The other compares various models to func-
tional programming concepts and makes a
specific resemblance between tree nets to
catamorphisms and inverse tree nets to anamor-
phisms. this is a limited perspective. The
writer comments “I expect this idea is wrong,
because most untested ideas are wrong. But it
could be right, and I think it’s worth talking
about.”

This emphasises the state of the relationship of
functional programming and recursion schemes
with neural network; I believe recursion schemes
can be applicable to a broad range of neural net-
work models.


