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Towards type-driven data-science in Idris
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1 Introduction
The traditional data-analysis pipe-line comprises of several
layers, each of which involving nuanced dependencies on
the shape and content of the processed data. Inference code
depends on the shape of the model. The shapes of the re-
sults of tabular operations on data-frames depend on the
shape and values stored of the input frames. When cleaning
data, the shape of the parse-tree depends on the regex literal
constructed to parse it. The legend of a figure depends on
the number of graphs it visualises. Modern pipelines are
thus developed in dynamically-typed languages, perhaps
because simple-type systems are incapable of expressing
such dependencies — especially tracking intermediate array
dimensions statically. Most recently, languages experiment
with dependently, and nearly-dependently, typed techniques
that include just enough type-dependency to express such
constraints [Henriksen et al. 2017; Paszke et al. 2021].
We take a different approach, and use a fully-fledged de-

pendently typed language to use the full expressive power of
type-dependency. Such languages, like Agda [Norell 2007]
and Idris [Brady 2011, 2013], also offer interactive develop-
ment environments that take advantage of the available type
information to automatically construct parts of the program
without running it. When some data is available statically,
features such as dependent type providers [Christiansen
2013] can load some of it during type-checking, further blur-
ring the distinction between dynamic and static without
compromising on the robustness guarantees a static type sys-
tem provides. The recently released Idris 2 language [Brady
2021] offers an additional axis of erasure: its unique imple-
mentation of Atkey and McBride’s quantitative type the-
ory [Atkey 2018] allow programmers to include complex
dependencies in their pipeline while retaining fine control
over their presence at runtime, providing space and time
efficiency guarantees.
We would like to demonstrate some of the data-analysis

pipeline components we have been developing in Idris 2 over
the last couple of years. Our goal is to solicit feedback and
discussion with the LAFI community about the challenges
ahead, promising leads, interesting directions, and related
work.

2 TyRE: type-driven regex parsing
A core task in data analysis is to extract data, either bymining
it from raw data or by analysing existing textual data fields. A
key swiss-army knife is the regular expression (regex), which
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admits efficient recognising and parsing. Since our goal is to
extract data, pipelines often use regex capture groups. The
users write regex literals contain markers for capturing frag-
ments of the matched regexes. The relationship between the
regex literal and the shape of the capture group is nuanced,
and a simply-typed host language would need native support
for regex literals. In a dependently-typed language, we can
parse regex literals statically with library code, and imple-
ment Radanne’s Typed RegEx (TyRE) layer [Radanne 2019]
that returns a structured parse-tree instead of an unstruc-
tured capture group. Radanne’s implementation translates
the TyRE layer to an untyped regex with capture groups
since his OCaml ecosystem already contains efficient regex
engines. Since Idris 2 doesn’t yet possess such mature soft-
ware, we implement a dependently-typed regex parser that
is guaranteed to return a parse tree of the correct shape.

3 Tables: statically-typed tabular data
A substantial part of data analysis concerns storing the data
and intermediate results in tabular form. These are often ac-
companied by an efficient implementation, e.g., an interface
to a database with data operations translating into optimised
queries, although we make no attempts to do so at the mo-
ment. The schema of a result-table often depends on the
values stored in an input-table, for example, pivoting a col-
lection of rows into a collection of columns.
Using dependent types to represent schema and tables

is a well-established idea [Oury and Swierstra 2008]. Our
contribution is a conformant API to the recent Brown Bench-
mark for Table Types (B2T2) [Lu et al. 2022]. When the
source schema are available statically, the primitive com-
pute resulting schema statically, maintaining an interactive
notebook-like feel to the data exploration.

4 ProbFX and Idris-Bayes: modular
statistical modelling and inference

We re-implement recent development in modular statistical
modelling [Nguyen et al. 2022] and Bayesian inference [Ścibior
et al. 2018]. Here our goal was merely to replicate the state-
of-the-art, but we believe dependent types offer much room
for more nuanced inference such as trace types [Lew et al.
2020] and similar extensions.

5 Jupyter-Vega: data visualisation binding
We provide bindings to the award-winning Vega-Lite for-
mat [Satyanarayan et al. 2017], and a simple Jupyter Note-
book kernel for invoking Idris 2 modules and printing their
return values and visualisation. We believe there is much
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Figure 1. Melocule-generated blues sample

room for type-driven development here, and we are excited
to discuss these prospects with workshop participants.

6 Idris-ODF: data reporting binding
Data needs to be retrieved from and output into office-application
formats such as ISO OpenDocument Format (ODF, ISO stan-
dard ISO/IEC 26300-1:2015). This format include spread-
sheets and word-processors, and we have implemented basic
bindings for ODF. It is suggestive to develop application-
specific dependently-typed layers on top of these bindings
to facilitate type-driven reporting and importing.

7 Melocule: generative music
We are currently developing a simple generative music li-
brary using these tools. To this end, we developed a MiDi
bindings library for Idris 2, and used it to formulate basic
concepts in music theory. These include some dependently-
typed representation, for example scales are indexed by Ma-
jor/Minor qualities to ensure scales are well-defined. Fig. 1
shows a sample blues piece we generated. We are currently
working on incorporating Bayesian conditioning into our
generative models.

8 Conclusion and prospects
To summarise, we have proto-typed core data-analysis com-
ponents in Idris 2, and are excited by their existing and poten-
tial prospects for data-set exploration, statistical modelling,
and pipeline deployment. We hope to be able to present them
to the LAFI community this year in Boston.
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