
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Towards type-driven data-science in Idris
Anonymous Author(s)

1 Introduction
The traditional data-analysis pipe-line comprises of several
layers, each of which involving nuanced dependencies on
the shape and content of the processed data. Inference code
depends on the shape of the model. The shapes of the re-
sults of tabular operations on data-frames depend on the
shape and values stored of the input frames. When cleaning
data, the shape of the parse-tree depends on the regex literal
constructed to parse it. The legend of a figure depends on
the number of graphs it visualises. Modern pipelines are
thus developed in dynamically-typed languages, perhaps
because simple-type systems are incapable of expressing
such dependencies — especially tracking intermediate array
dimensions statically. Most recently, languages experiment
with dependently, and nearly-dependently, typed techniques
that include just enough type-dependency to express such
constraints [Henriksen et al. 2017; Paszke et al. 2021].
We take a different approach, and use a fully-fledged de-

pendently typed language to use the full expressive power of
type-dependency. Such languages, like Agda [Norell 2007]
and Idris [Brady 2011, 2013], also offer interactive develop-
ment environments that take advantage of the available type
information to automatically construct parts of the program
without running it. When some data is available statically,
features such as dependent type providers [Christiansen
2013] can load some of it during type-checking, further blur-
ring the distinction between dynamic and static without
compromising on the robustness guarantees a static type sys-
tem provides. The recently released Idris 2 language [Brady
2021] offers an additional axis of erasure: its unique imple-
mentation of Atkey and McBride’s quantitative type the-
ory [Atkey 2018] allow programmers to include complex
dependencies in their pipeline while retaining fine control
over their presence at runtime, providing space and time
efficiency guarantees.
We would like to demonstrate some of the data-analysis

pipeline components we have been developing in Idris 2 over
the last couple of years. Our goal is to solicit feedback and
discussion with the LAFI community about the challenges
ahead, promising leads, interesting directions, and related
work.

2 TyRE: type-driven regex parsing
A core task in data analysis is to extract data, either bymining
it from raw data or by analysing existing textual data fields. A
key swiss-army knife is the regular expression (regex), which

LAFI’23, January 15-21, 2023, Boston, MA
2023. ACM ISBN 00. . . $00.00
https://doi.org/XXXXXXX.XXXXXXX

admits efficient recognising and parsing. Since our goal is to
extract data, pipelines often use regex capture groups. The
users write regex literals contain markers for capturing frag-
ments of the matched regexes. The relationship between the
regex literal and the shape of the capture group is nuanced,
and a simply-typed host language would need native support
for regex literals. In a dependently-typed language, we can
parse regex literals statically with library code, and imple-
ment Radanne’s Typed RegEx (TyRE) layer [Radanne 2019]
that returns a structured parse-tree instead of an unstruc-
tured capture group. Radanne’s implementation translates
the TyRE layer to an untyped regex with capture groups
since his OCaml ecosystem already contains efficient regex
engines. Since Idris 2 doesn’t yet possess such mature soft-
ware, we implement a dependently-typed regex parser that
is guaranteed to return a parse tree of the correct shape.

3 Tables: statically-typed tabular data
A substantial part of data analysis concerns storing the data
and intermediate results in tabular form. These are often ac-
companied by an efficient implementation, e.g., an interface
to a database with data operations translating into optimised
queries, although we make no attempts to do so at the mo-
ment. The schema of a result-table often depends on the
values stored in an input-table, for example, pivoting a col-
lection of rows into a collection of columns.
Using dependent types to represent schema and tables

is a well-established idea [Oury and Swierstra 2008]. Our
contribution is a conformant API to the recent Brown Bench-
mark for Table Types (B2T2) [Lu et al. 2022]. When the
source schema are available statically, the primitive com-
pute resulting schema statically, maintaining an interactive
notebook-like feel to the data exploration.

4 ProbFX and Idris-Bayes: modular
statistical modelling and inference

We re-implement recent development in modular statistical
modelling [Nguyen et al. 2022] and Bayesian inference [Ścibior
et al. 2018]. Here our goal was merely to replicate the state-
of-the-art, but we believe dependent types offer much room
for more nuanced inference such as trace types [Lew et al.
2020] and similar extensions.

5 Jupyter-Vega: data visualisation binding
We provide bindings to the award-winning Vega-Lite for-
mat [Satyanarayan et al. 2017], and a simple Jupyter Note-
book kernel for invoking Idris 2 modules and printing their
return values and visualisation. We believe there is much

1

https://doi.org/XXXXXXX.XXXXXXX

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

LAFI’23, January 15-21, 2023, Boston, MA Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

��
���

�
����

��
��
�

� ����� ��� ���� ��� � �� �
��� ���

�� � �
�

��
�

��� ��
����

� �

�����
�
��� �� ���� ���� ��� ����� �� ����

�

4

�
� ����
� �

�
�� ���� ��
��
�

� ��� �� ���
����� ��� ������ �

������� ���
�

��7 �
� ���� ����

� � ��
�

��� �

�����
����

��� �� �� � ������ ������ � �� ��
���

�

10

�
����
� � �

����
�

�
� �

����
� �

�
���� ���� �������� ������� �� �� ���

�
�

� �
�13

��
� �� � �

���� �
�

� ��
���

�

�� �� �����
��� ��� ��� 	��� 	��

������� ����
�

16

�
�
����
� �

���
�

��� � �� � �

���� ��� ���
�� ��� ������� ���� ����

�
���

�
�19

�
�

�
����
�

�
� �� � �� �

���
�

Figure 1. Melocule-generated blues sample

room for type-driven development here, and we are excited
to discuss these prospects with workshop participants.

6 Idris-ODF: data reporting binding
Data needs to be retrieved from and output into office-application
formats such as ISO OpenDocument Format (ODF, ISO stan-
dard ISO/IEC 26300-1:2015). This format include spread-
sheets and word-processors, and we have implemented basic
bindings for ODF. It is suggestive to develop application-
specific dependently-typed layers on top of these bindings
to facilitate type-driven reporting and importing.

7 Melocule: generative music
We are currently developing a simple generative music li-
brary using these tools. To this end, we developed a MiDi
bindings library for Idris 2, and used it to formulate basic
concepts in music theory. These include some dependently-
typed representation, for example scales are indexed by Ma-
jor/Minor qualities to ensure scales are well-defined. Fig. 1
shows a sample blues piece we generated. We are currently
working on incorporating Bayesian conditioning into our
generative models.

8 Conclusion and prospects
To summarise, we have proto-typed core data-analysis com-
ponents in Idris 2, and are excited by their existing and poten-
tial prospects for data-set exploration, statistical modelling,
and pipeline deployment. We hope to be able to present them
to the LAFI community this year in Boston.

References
Robert Atkey. 2018. Syntax and Semantics of Quantitative Type Theory.

In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, Anuj Dawar
and Erich Grädel (Eds.). ACM, 56–65. https://doi.org/10.1145/3209108.
3209189

Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. In 35th Eu-
ropean Conference on Object-Oriented Programming (ECOOP 2021) (Leib-
niz International Proceedings in Informatics (LIPIcs), Vol. 194), Anders
Møller and Manu Sridharan (Eds.). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, 9:1–9:26. https://doi.org/10.4230/
LIPIcs.ECOOP.2021.9

Edwin C. Brady. 2011. IDRIS —: Systems Programming Meets Full De-
pendent Types. In Proceedings of the 5th ACM Workshop on Program-
ming Languages Meets Program Verification (Austin, Texas, USA) (PLPV
’11). Association for Computing Machinery, New York, NY, USA, 43–54.
https://doi.org/10.1145/1929529.1929536

Edwin C. Brady. 2013. Idris: General Purpose Programming with De-
pendent Types. In Proceedings of the 7th Workshop on Programming
Languages Meets Program Verification (Rome, Italy) (PLPV ’13). Asso-
ciation for Computing Machinery, New York, NY, USA, 1–2. https:
//doi.org/10.1145/2428116.2428118

David Raymond Christiansen. 2013. Dependent type providers. In Proceed-
ings of the 9th ACM SIGPLAN workshop on Generic programming, WGP
2013, Boston, Massachusetts, USA, September 28, 2013, Jacques Carette and
Jeremiah Willcock (Eds.). ACM, 25–34. https://doi.org/10.1145/2502488.
2502495

Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and
Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-Programming
with Nested Parallelism and in-Place Array Updates. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Barcelona, Spain) (PLDI 2017). Association for Comput-
ing Machinery, New York, NY, USA, 556–571. https://doi.org/10.1145/
3062341.3062354

Alexander K. Lew,Marco F. Cusumano-Towner, Benjamin Sherman, Michael
Carbin, and Vikash K. Mansinghka. 2020. Trace types and denotational
semantics for sound programmable inference in probabilistic languages.
Proc. ACM Program. Lang. 4, POPL (2020), 19:1–19:32. https://doi.org/10.
1145/3371087

Kuang-Chen Lu, Ben Greenman, , and Shriram Krishnamurthi. 2022. Types
for Tables: A Language Design Benchmark. The Art, Science, and Engi-
neering of Programming 6, 2 (2022), 26 pages.

Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu. 2022. Modular
Probabilistic Models via Algebraic Effects. Proc. ACM Program. Lang. 6,
ICFP, Article 104 (aug 2022), 30 pages. https://doi.org/10.1145/3547635

Ulf Norell. 2007. Towards a practical programming language based on depen-
dent type theory. Ph. D. Dissertation. Department of Computer Science
and Engineering, Chalmers University of Technology, SE-412 96 Göte-
borg, Sweden.

Nicolas Oury and Wouter Swierstra. 2008. The Power of Pi. In Proceedings
of the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming (Victoria, BC, Canada) (ICFP ’08). Association for Computing
Machinery, New York, NY, USA, 39–50. https://doi.org/10.1145/1411204.
1411213

2

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/1929529.1929536
https://doi.org/10.1145/2428116.2428118
https://doi.org/10.1145/2428116.2428118
https://doi.org/10.1145/2502488.2502495
https://doi.org/10.1145/2502488.2502495
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3371087
https://doi.org/10.1145/3547635
https://doi.org/10.1145/1411204.1411213
https://doi.org/10.1145/1411204.1411213

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Towards type-driven data-science in Idris LAFI’23, January 15-21, 2023, Boston, MA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Adam Paszke, Daniel D. Johnson, David Duvenaud, Dimitrios Vytiniotis,
Alexey Radul, Matthew J. Johnson, Jonathan Ragan-Kelley, and Dou-
gal Maclaurin. 2021. Getting to the Point: Index Sets and Parallelism-
Preserving Autodiff for Pointful Array Programming. Proc. ACM Program.
Lang. 5, ICFP, Article 88 (aug 2021), 29 pages. https://doi.org/10.1145/
3473593

Gabriel Radanne. 2019. Typed parsing and unparsing for untyped regular
expression engines. In PEPM 2019 - Proceedings of the 2019 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, Co-located

with POPL 2019. https://doi.org/10.1145/3294032.3294082
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jef-

frey Heer. 2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE
Trans. Visualization & Comp. Graphics (Proc. InfoVis) (2017). http:
//idl.cs.washington.edu/papers/vega-lite

Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional
programming for modular Bayesian inference. Proc. ACM Program. Lang.
2, ICFP (2018), 83:1–83:29. https://doi.org/10.1145/3236778

3

https://doi.org/10.1145/3473593
https://doi.org/10.1145/3473593
https://doi.org/10.1145/3294032.3294082
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite
https://doi.org/10.1145/3236778

	1 Introduction
	2 TyRE: type-driven regex parsing
	3 Tables: statically-typed tabular data
	4 ProbFX and Idris-Bayes: modular statistical modelling and inference
	5 Jupyter-Vega: data visualisation binding
	6 Idris-ODF: data reporting binding
	7 Melocule: generative music
	8 Conclusion and prospects
	References

