
Composable, Modular Probabilistic Models

MINH NGUYEN∗, University Of Bristol, United Kingdom

Probabilistic programming languages (PPLs) allow one to construct statistical models to describe certain
problem domains, and then simulate data or perform inference over them [5]. In many PPLs, models lack
reusability as they are forced to be defined for a specific use-case: simulation or inference. In other PPLs, models
lack the ability to be combined or composed. This project describes a DSL for modularly defining probabilistic
models which are combinable and composable, and can be reused for both simulation and inference.

1 PROBLEM ANDMOTIVATION
To make the workflow of using probabilistic languages as convenient as possible, there are two
significant challenges to engage with:
(1) How easy is it to specify and iterate through differentmodels. It is common to quickly experiment

with many different definitions of models before considering if/how they will be used at all.
(2) How easy is it to combine and compose different models. This is essential for modular devel-

opment of models and hierarchical modeling where compound models are constructed from
independently defined sub-models.

Effectively achieving both of these properties is something that is left to be desired amongst PPLs.

2 BACKGROUND AND RELATEDWORK
What separates a probabilistic language from a non-probabilistic one is the ability to:
• Sample - To draw a value from a distribution.
• Observe - To condition against the probability of a distribution giving rise to an observed value.
Given these two probabilistic constructs, one then expects to be able to:
(1) Describe a model for a problem. This is specified by its parameters and a description of how it

generates data, usually expressed as a mathematical relationship between random variables.
(2) Simulate data from a model given a fixed set of model parameters.
(3) Infer the parameters of a model by providing observed data to condition against.
PPLs can be categorized into being either query-based or model-based languages.
Query-based languages (Anglican [11], WebPPL [4], MonadBayes [10]) operate via the user

writing a probabilistic query as a normal function but with the freedom to explicitly use sample and
observe - this allows one to directly express probabilistic computations for a given problem. Queries
can be easily combined (they can call other queries) and sometimes even functionally composed.

The explicit use of sample and observe, however, means that query-based PPLs can only express
“instances” of models which are specific to how they will be used - either for simulation or inference.
This leads to having to redefine the same model for each use case. It hence becomes frustrating to
iterate through and evolve models whilst having to maintain each model interpretation.

Model-based languages (Turing.jl [3], Gen.jl [2], PyMC3 [9], Stan [1]) allow the user to construct
models as a description of relationships between random variables, where the semantics of sampling
and observing are not tied to the model description. This allows one to independently specify and
evolve models, and then later perform simulation and inference on the same model definition.
A significant limitation of existing model-based languages is that it is either impossible to

combine models or the means of doing so is awkward, and it is impossible to compose models.
The result is often that models have to be monolithically defined and can not be manipulated by
functional constructs such as higher-order functions and functional combinators.
∗Supervised by Dr Meng Wang, Dr Roly Perera. ACM number: 0619104. Graduate category. min.nguyen@.bristol.ac.uk

HTTPS://ORCID.ORG/0000-0003-3845-9928

2 Minh Nguyen

3 APPROACH AND UNIQUENESS
This project describes a shallow embedded model-based PPL for modular, composable models. The
design relies on free monad transformers, type families, type classes, and extensible records, where
the implementation is demonstrated in Haskell. The final type definition of a model is given below:

type Model s a = FreeT Dist (Reader (MRecord s)) a

The rest of this section introduces the components of this definition step-by-step and describes
why they were found necessary in the construction of a model.

3.1 Free monad transformers
The first ideal of the language is that a model should be a syntactic description of the relationships
between random variables, where simulation and inference are mechanisms which provide seman-
tics to the model. To achieve this separation of concerns, free monad transformers [6], FreeT f m a,
are used as a means of constructing a syntactic tree, where the structure of its nodes are described
by some functor f and embellished with some monadic effect m.

data FreeF f a x = Pure a | FreeF (f x)
newtype FreeT f m a = FreeT { runFreeT :: m (FreeF f a (FreeT f m a)) }

What is left to be decided are the choice of functor f and monad m in the free monad transformer.

3.2 Distributions as functor f
The free monad’s functor f completely determines the available information given when deciding
how to provide semantics to the model. The shape of our nodes f is described by the functor Dist
where each of its constructors represents a primitive distribution.

data Dist a where
NormalDist :: Double −> Double −>Maybe Double −> (Double −> a) −> Dist a
BernoulliDist :: Double −>Maybe Bool −> (Bool −> a) −> Dist a
BinomialDist :: Int −> Double −>Maybe Int −> (Int −> a) −> Dist a

Each distribution constructor takes the following arguments, in order:
(1) Some distribution parameters.
(2) A value of type Maybe a, expressing the presence of an observed value to condition against.

This effectively unifies the syntax of sample and observe, and decides which one is performed.
(3) A continuation, taking a value the distribution produces to some type a - this lets Dist to be a

functor whilst still encoding type information about what values each distribution generates.

3.3 Reader and Extensible Effects as monad m
Whether the user provides observed data to the model decides when sampling and observing occur.
The model should avoid taking observed data as explicit function arguments, as this detracts from
the model existing independently from the notions of simulation and inference. The Reader env
monad is hence used as the effect m in our free monad tree, where its environment contains all
observable variables in the model that can be conditioned against.

Forcing each model to have its own fixed reader environment, however, prohibits the ability to
combine and compose models. Rather, the environments of models should be kept abstract and
only require that certain variables relevant to the model can be referenced. This can be achieved
via extensible records [7] and type families. The type MRecord s defines an open record where s is a
heterogeneous list of associations between field names andMaybe types. The typeclass HasVar s k v
then states that a value of type Maybe v can be looked up with key k from the record MRecord s.

Composable, Modular Probabilistic Models 3

3.4 Example Program: Hidden Markov Model (HMM)
Below depicts how aHMM [8] can be written in this language. A HMM is defined by two sub-models:
(1) A transition model describes how latent states x are transitioned between. The variable dX is

drawn from a Bernoulli distribution (using a smart constructor), where Nothing is explicitly
passed to indicate the intention to always sampled and never observe.

transitionModel :: Double −> Int −> Model s Int
transitionModel transition_p x_prev = do
dX <− boolToInt <$> bernoulli transition_p Nothing
return (x_prev + dX)

(2) An observation model projects a latent state x to an observable state y. The variable y_data of
type Maybe Int is referenced from the constraint (HasVar s "y_data" Int) , and its value decides
whether the Binomial distribution is sampled from or observed against.

observationModel :: (HasVar s "y_data" Int) => Double −> Int −> Model s Int
observationModel observation_p x = binomial x observation_p y_data

These sub-models can be combined to define a HMM for a single node.
hmm :: (HasVar s "y_data" Int) => Double −> Double −> Int −> Model s Int
hmm transition_p observation_p x_prev = do
x <− transitionModel transition_p x_prev
y <− observationModel observation_p x
return x

Furthermore, this HMM can be functionally composed to create a chain of nodes, by creating a list
of HMMs and folding over this with kleisli composition (>=>).

hmmNSteps :: (HasVar s "y_data" Int) => Double −> Double −> Int −> (Int −> Model s Int)
hmmNSteps transition_p observation_p n =
foldl (>=>) return (replicate n (hmm transition_p observation_p))

4 CONTRIBUTIONS AND RESULTS
In general, this contributes a language for defining probabilistic models in a strongly-typed, func-
tional paradigm. The following contributions and observations about novelty are noted:
• This achieves a PPL which separates the syntactic construction of a probabilistic model from
the semantics of simulation and inference through using free monad transformers with the
distribution functor. Ścibior [10] has incorporated free monad transfomers in probabilistic
programming, but to implement query-based inference algorithms. Other approaches include
macro-compilation [2, 3], or compilation to entirely different languages [1].

• Observable variables of models can be stated minimally as type class constraints and then easily
referenced in the model, via extensible records and type families/classes. This isolates details
about inference from the term-level and delays interpretation of probabilistic statements until an
environment is provided to the Reader monad. Other solutions include macro-compilation [2, 3]
or manual addressing of probabilistic statements and providing mappings between addresses and
observed data [2, 4, 9]. Extensible records have not previously been seen adopted as a solution.

• Models can be combined monadically. As a consequence, this means that models and primitive
distributions can be treated similarly - a feature that is highly lacking in existing model-based
languages. Most languages [1, 3, 9] are not capable of calling models from other models. Models
can also be composed with functional combinators such as kleisli composition, folding, mapping,
etc. This has not been found possible in other current model-based languages.

4 Minh Nguyen

REFERENCES
[1] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus A

Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: a probabilistic programming language. Grantee
Submission 76, 1 (2017), 1–32.

[2] Marco F. Cusumano-Towner, Feras A. Saad, Alexander K. Lew, and Vikash K. Mansinghka. 2019. Gen: A General-
purpose Probabilistic Programming System with Programmable Inference. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York,
NY, USA, 221–236. https://doi.org/10.1145/3314221.3314642

[3] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In International
Conference on Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,
Spain. 1682–1690. http://proceedings.mlr.press/v84/ge18b.html

[4] Noah D Goodman and Andreas Stuhlmüller. 2014. The Design and Implementation of Probabilistic Programming
Languages. http://dippl.org. Accessed: 2021-5-24.

[5] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. 2014. Probabilistic programming. In
Future of Software Engineering Proceedings. 167–181.

[6] Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. ACM SIGPLAN Notices 50, 12 (2015),
94–105.

[7] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. In Proceedings of the
2004 ACM SIGPLAN Workshop on Haskell. 96–107.

[8] Lawrence Rabiner and Biinghwang Juang. 1986. An introduction to hidden Markov models. ieee assp magazine 3, 1
(1986), 4–16.

[9] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science 2 (2016), e55.

[10] Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Functional programming for modular Bayesian inference.
Proceedings of the ACM on Programming Languages 2, ICFP (2018), 1–29.

[11] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. 2016. Design and implementation of
probabilistic programming language anglican. (2016), 1–12.

https://doi.org/10.1145/3314221.3314642
http://proceedings.mlr.press/v84/ge18b.html
http://dippl.org

	Abstract
	1 Problem and Motivation
	2 Background And Related Work
	3 Approach and Uniqueness
	3.1 Free monad transformers
	3.2 Distributions as functor f
	3.3 Reader and Extensible Effects as monad m
	3.4 Example Program: Hidden Markov Model (HMM)

	4 Contributions And Results
	References

