
E�ect Handlers for Programmable Inference

Minh Nguyen
min.nguyen@bristol.ac.uk

University of Bristol
Bristol, UK

Roly Perera
roly.perera@bristol.ac.uk

University of Bristol
Bristol, UK

Meng Wang
meng.wang@bristol.ac.uk

University of Bristol
Bristol, UK

Steven Ramsay
steven.ramsay@bristol.ac.uk

University of Bristol
Bristol, UK

Abstract

Inference algorithms for probabilistic programming are com-
plex imperative programs with many moving parts. E�-
cient inference often requires customising an algorithm to a
particular probabilistic model or problem, sometimes called
inference programming. Most inference frameworks are im-
plemented in languages that lack a disciplined approach to
side e�ects, which can result in monolithic implementations
where the structure of the algorithms is obscured and infer-
ence programming is hard. Functional programming with
typed e�ects o�ers a more structured and modular founda-
tion for programmable inference, with monad transformers
being the primary structuring mechanism explored to date.
This paper presents an alternative approach to inference

programming based on algebraic e�ects. Using e�ect signa-
tures to specify the key operations of the algorithms, and
e�ect handlers to modularly interpret those operations for
speci�c variants, we develop two abstract algorithms, or
inference patterns, representing two important classes of in-
ference: Metropolis-Hastings and particle �ltering. We show
how our approach reveals the algorithms’ high-level struc-
ture, and makes it easy to tailor and recombine their parts
into new variants. We implement the two inference patterns
as a Haskell library, and discuss the pros and cons of alge-
braic e�ects vis-à-vis monad transformers as a structuring
mechanism for modular imperative algorithm design.

CCS Concepts: • Software and its engineering→ Func-

tional languages; Software libraries and repositories; •
Mathematics of computing→Probabilistic algorithms.

Keywords: probabilistic programming, algebraic e�ects, func-
tional programming, modularity

Haskell ’23, September 8–9, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0298-3/23/09.

h�ps://doi.org/10.1145/3609026.3609729

ACM Reference Format:

Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay. 2023.
E�ect Handlers for Programmable Inference. In Proceedings of the

16th ACM SIGPLAN International Haskell Symposium (Haskell ’23),

September 8–9, 2023, Seattle, WA, USA. ACM, New York, NY, USA,
15 pages. h�ps://doi.org/10.1145/3609026.3609729

1 Introduction

Probabilistic programming languages allow modellers to use
programs to formulate inference problems over models. For
example in ProbFX [28], a probabilistic language embedded
in Haskell, a linear regression model relating input G and
output ~ linearly can be expressed as:

linRegr :: Double→ Double→ Model (Double, Double)

linRegr G ~ = do

<← call (Sample (Normal 0 3))

2 ← call (Sample (Normal 0 2))

call (Observe (Normal (< ∗ G + 2) 1) ~)

pure (<, 2)

The two Sample operations specify the distributions that the
line’s slope< and intercept 2 are sampled from, representing
our prior beliefs about< and 2 before accounting for any
data, denoted P(<,2). Given an observed output ~ for some
�xed input G , the operationObserve represents a conditioning
side-e�ect, conditioning the model against the likelihood

of ~ having been generated (in this case) from the normal
distribution with mean < ∗ G + 2 and standard deviation
of 1, denoted P(~ |<,2;G). The variables G and ~ here are
observable, whereas< and 2 that relate them are latent.

Inference over such a model is then the process of revising
our estimation of its latent variables on the basis of the
observed data, obtaining a posterior distribution. For the
linear regression example, the Bayesian update rule yields
the following equation for the posterior P(<,2 |~;G):

P(<,2 |~;G)
︸ ︷︷ ︸

posterior

=

likelihood
︷ ︸︸ ︷

P(~ |<,2;G) ·

prior
︷ ︸︸ ︷

P(<,2)

P(~;G)
︸ ︷︷ ︸

evidence

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

44

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-3845-9928
https://orcid.org/0000-0001-9249-9862
https://orcid.org/0000-0001-7780-630X
https://orcid.org/0000-0002-0825-8386
https://doi.org/10.1145/3609026.3609729
https://doi.org/10.1145/3609026.3609729

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

Unfortunately, extracting an exact form for the posterior is
rarely simple. Although the Sample and Observe operations
in linRegr determine the prior and likelihood respectively,
computing the evidence P(~;G) that forms the denominator
often involves complex, high-dimensional integration [1],
and probabilistic languages in practice hence use approxi-
mation algorithms such as Monte Carlo methods [2] or vari-
ational inference [13]. Most techniques involve treating the
model generatively — as something from which samples can
be drawn — and then iteratively constraining the behaviour
of the model so that, over time, those samples eventually
conform to the observations.

When using the model generatively in this way, inference
algorithms need to provide their own semantics for sampling
and observing. For example, Metropolis-Hastings algorithms
[4] execute the target model under speci�c proposals, that �x
the stochastic choices made by the model on a given run. By
selectively accepting or rejecting proposals, the algorithm
controls how samples are generated, and guarantees that
as more samples are produced, the distribution of values
eventually converges on the desired posterior. Pseudocode
for a generic Metropolis-Hastings iteration is shown here
for linear regression:

do (<′, 2 ′)← propose (<, 2)

d ′ ← exec (linRegr G ~) (<′, 2 ′)

b ← accept d ′ d

pure (if b then (<′, 2 ′) else (<, 2))

First new values <′ and 2 ′ are proposed for the slope and
intercept, given the values from the previous iteration, <
and 2. The function exec then executes the linear regression
model with a custom semantics for sampling and observing,
ensuring that<′ and 2 ′ are used for the corresponding Sample

operations, and conditioning with observations G and ~. The
resulting likelihood d ′ is compared with d from the previous
iteration to determine whether to accept the new proposal
or keep the current one. Running this procedure for many
iterations will generate a sequence of samples< and 2 that
approximate the posterior distribution P(<,2 |~;G).

We think of Metropolis-Hastings, as sketched here, as an
inference pattern rather than an inference algorithm: there
are many algorithmic variants with this particular structure,
di�ering only in how they implement propose, exec, and ac-

cept. Indeed, most algorithms come in similar families of
variants, with abstract operations and skeletal behaviour
shared by the variants, as well as their own bespoke execu-
tion semantics for models. Particle �lters [11], for example,
also called sequential Monte Carlo methods, rely on being
able to partially execute collections of models called par-

ticles from observation point to observation point; at each
observation, particles are randomly �ltered, or resampled, to
retain only those likely to have come from the target poste-
rior. Di�erent instances of the Particle Filter pattern vary in
how the resampling operation works, and how particles are

Model

Observe Sample

Metropolis-Hastings Particle Filter

Propose Accept Resample

Independence
Metropolis

Particle
Metropolis-
Hastings

Multinomial
Particle Filter

Single-Site
Metropolis-
Hastings

Resample-
Move

Particle Filter

interprets

interprets

Abstract modeling code

Abstract inference pattern

Inference algorithm

Operation

interprets

Figure 1. Inference patterns presented in this paper

executed between observation points; di�erent choices yield
di�erent well-known algorithms.

The task of implementing these algorithmic variants falls
not just to library designers; model authors also often need to
be versed in the intricacies of inference to achieve acceptable
performance. Programming new inference algorithms out of
reusable parts of existing ones is sometimes called inference

programming [24]. Existing approaches include: Venture [25],
a Lisp-based language using metaprogramming techniques;
MonadBayes [31], which uses monad transformers to im-
plement a modular library for inference programming in
Haskell; and Gen [8], a inference programming framework
in Julia which relies on a �xed black-box interface for exe-
cuting models generatively.
In this paper, we present an approach to programmable

inference based on algebraic e�ects. We use e�ect signa-
tures to specify the key operations of various classes of ab-
stract inference algorithms, and e�ect handlers to specialise
those algorithms into concrete variants adapted to speci�c
problems. We use the approach to develop two abstract al-
gorithms, or inference patterns, representing two important
classes of inference, and implement them in Haskell. Our
speci�c contributions are as follows:

• §2 informally introduces the idea of an inference pattern.
• § 3 presents the Metropolis-Hastings inference pattern,
with IndependenceMetropolis and Single-SiteMetropolis-
Hastings as illustrative instances.
• § 4 presents the Particle Filter inference pattern, also
known as sequential Monte Carlo, with Multinomial Par-
ticle Filter and Resample-Move Particle Filter as instances.
We also derive Particle Metropolis-Hastings, an instance
of Metropolis-Hastings which uses Particle Filter.
• §5 shows that the performance of our approach is com-
petitive with state-of-the-art systems for programmable
inference based on other techniques.
• §6 contrasts our approach to untyped approaches such
as Gen and Venture, and MonadBayes, the main existing
framework based on typed e�ects.

The algorithms we discuss are well known; what we bring
to the picture is the novel modular architecture, outlined

45

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

in Fig. 1, which reveals the high-level structure of the algo-
rithms and makes it easy to tailor and recombine their parts
into new variants. Themodel, provided by the user, expresses
an abstract inference problem in terms of Sample and Observe

operations. Inference patterns, provided by library designers,
assign speci�c semantics to those operations, and provide
skeletal procedures for iteratively executing a model under
those semantics. These procedures are in turn expressed in
terms of their own abstract operations, which can also be
assigned a semantics to obtain a concrete algorithm capable
of generating samples from the model’s posterior.

This design makes it easy to de�ne new algorithmic vari-
ants out of existing ones. For example, we can easily build
a particle �lter algorithm which uses another well-known
inference algorithm,Metropolis-Hastings, as an internal com-
ponent; equally easily, we can derive a version of Metropolis-
Hastings that uses particle �lter. Moreover each of these
complex scenarios arise in real-world solutions.
We build on two pieces of prior work: the extensible freer

monad (§ 1.1), which adds an extensible e�ect system to
Haskell, and ProbFX (§1.2), an embedding of probabilistic
models in Haskell based on this approach.

1.1 Background: An Embedding of Extensible E�ects

E�ect systemsmodel e�ects as coroutine-like interactions be-
tween side-e�ecting expressions that request operations to be
performed, and special contexts, called handlers, that assign
meaning to those operations [3]. An operation may provide
a continuation, allowing the handler to return control to
the requesting expression. E�ect systems o�er a �exible al-
ternative to monad transformers [23] for adding complex
imperative features to functional languages, making them
an appealing tool for structuring inference algorithms. But
the only precedent we know of is by Ścibior and Kammar
[30] on basic rejection sampling.

The extensible freer monad [20] is an embedding of a typed
e�ect system into Haskell, exploiting Haskell’s rich support
for embedded languages. The basic idea is to represent an
e�ectful computation using the recursive datatype Comp es a

at the top of Fig. 2. A term of type Comp es a represents a
computation that produces a value of type a, whilst possibly
performing any of the computational e�ects speci�ed by
the e�ect signature es, a type-level list of type constructors.
Leaf nodes Val x contain pure values x of type a. Operation
nodes Op op k contain operations op of the abstract datatype
E�ectSum es b, representing the invocation of an operation
of type e b for some e�ect type constructor e in es, where b is
the (existentially quanti�ed) return type of the operation; the
argument k is a continuation of type b→Comp es a that takes
the result of the operation and constructs the remainder of
the computation.

As one might surmise, Comp es is a monad, allowing e�ect-
ful code to piggyback on Haskell’s do notation for sequential
chaining of monadic computations. The bind operator (>>=)

data Comp (es :: [Type→ Type]) (a :: Type) where

Val :: a → Comp es a

Op :: E�ectSum es b → (b→ Comp es a)→ Comp es a

instance Monad (Comp es) where

(>>=) :: Comp es a→ (a→ Comp es b)→ Comp es b

Val x >>= f = f x

Op op k >>= f = Op op (k >=> f)

class e ∈ es where

inj :: e a → E�ectSum es a

prj :: E�ectSum es a → Maybe (e a)

call :: e ∈ es⇒ e a→ Comp es a

call op = Op (inj op) Val

Figure 2. Extensible freer monad embedding

can be viewed as taking a computation tree of type Comp es a

and extending it at its leaves with a computation generated
by f :: a→ Comp es b. In the Val x case, a new computation f x

is returned; otherwise forOp op k, the rest of the computation
k is composed with f using Kleisli composition (>=>). Values
of type Comp es a are thus uninterpreted “computation trees”
comprised of pure values and operation calls chosen from es.

E�ectSum es is key to the extensibility of the approach, rep-
resenting an “open” (extensible) sum of e�ect type construc-
tors; a concrete value of type E�ectSum es a is an operation
of type e a for exactly one e�ect type constructor e contained
in es. The implementation of E�ectSum is hidden; the type
class ∈ provides methods for safely injecting and projecting
e�ectful operations of type e a into and out of E�ectSum es a,
with the constraint e ∈ es asserting that e is a member of es.
The helper call makes it easy to write imperative code, as we
saw in the linRegr example, injecting the supplied operation
into E�ectSum es a and supplying the leaf continuation Val.

Interpreting e�ectful computations. Fig. 2 provided the
machinery required to construct e�ectful computations; Fig. 3
shows the machinery required to execute them. Execut-
ing an e�ectful computation means providing a “semantics”
for each of its e�ects, in the form of an interpreter called
an e�ect handler. A handler for e�ect type e has the type
Handler e es a b; it assigns partial meaning to a computation
tree by interpreting all operations of type e, discharging e

from the front of the e�ect signature, and transforming the
result type from a to b. E�ect handlers are thusmodular build-
ing blocks which compose to constitute full interpretations
of programs.
The helpers handle and handleWith make it easy to im-

plement handlers; handleWith is used for handlers that also
thread a state of type s, whereas handle sets s to be the triv-
ial unit type. Both take two higher-order arguments: hval,
which says how to interpret pure values, and hop, which says
how to interpret operations of e�ect type e. In the Val x case,

46

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

type Handler e es a b = Comp (e : es) a → Comp es b

handle

:: (a → Comp es b)

→ (forall c. e c→ (c→ Comp es b)→ Comp es b)

→ Handler e es a b

handle hval hop = handleWith () (const hval) (const hop′)

where hop′ op k = hop op (k ())

handleWith

:: s

→ (s→ a→ Comp es b)

→ (forall c. s→ e c→ (s→ c→ Comp es b)→ Comp es b)

→ Handler e es a b

handleWith s hval _ (Val x) = hval s x

handleWith s hval hop (Op op k) = case decomp op of

Le� op4 → hop s op4 k
′

Right op4B → Op op4B (k
′ s)

where k′ s′ = handleWith s′ hval hop ◦ k

decomp :: E�ectSum (e : es) a→ Either (e a) (E�ectSum es a)

Figure 3. E�ect handlers and handle/handleWith helpers

where the computation contains no operations, we simply
apply hval to the return value (and state), yielding a compu-
tation from which e has been discharged. In the Op op k case,
where op has type E�ectSum (e : es) a, the auxiliary function
decomp determines whether op belongs to the leftmost e�ect
e, and can thus be handled by hop, or whether it belongs to
an e�ect in es, in which case we can simply reconstruct the
operation at the narrower type. In either case we recurse (by
extending the continuation) to ensure that the rest of the
computation is handled similarly.

1.2 E�ects for Probabilistic Models

Nguyen et al. [28] use the extensible freer monad representa-
tion from §1.1 to de�ne an embedding of probabilistic models.
Models, in Fig. 4, are simply computations with access to two
speci�c e�ects, Sample and Observe, each with one operation:
Sample d samples from probability distribution d, and Observe

d y conditions d on an observed value y before returning
that same value y. These operations characterise the mini-
mal interface assumed by most inference methods, and for
simplicity here, we assume they are the only model e�ects
required, along with IO for random number generation.

Both Sample and Observe are constrained by the type class
Dist d a, specifying that the type d represents a primitive dis-
tribution generating values of type a, with the functional
dependency d→ a indicating that d fully determines a. In-
stances of Dist d a must implement two functions: (i) draw,
which takes a distribution d and random point r from the unit
interval [0, 1], and draws a sample by inverting the cumu-
lative distribution function of d at r; and (ii) logProb, which

type Model a = Comp [Observe, Sample, IO] a

data Sample a where

Sample :: Dist d a ⇒ d→ Sample a

data Observe a where

Observe :: Dist d a ⇒ d→ a→ Observe a

class Dist d a | d → a where

draw :: d → Double→ a

logProb :: d → a→ LogP

type LogP = Double

Figure 4. Models as computations that sample and observe

computes the log probability of d generating a particular
value. (The synonym LogP is helpful for distinguishing log
probabilities from other values of type Double.) For example,
the Bernoulli distribution over Booleans, with probability ?

of generating True, and 1 - ? for False, can be implemented as:

data Bernoulli = Bernoulli { ? :: Double }

instance Distribution Bernoulli Bool where

draw (Bernoulli ?) r = r ≤ ?

logProb (Bernoulli ?) b = if b then log ? else log (1 − ?)

This states that drawing True corresponds to drawing a ran-
dom value r ≤ ? uniformly from [0, 1], with the log probabili-
ties log ? and log (1 - ?) of drawing True and False respectively.

Interpreting probabilisticmodels. Interpreting amodel
means providing a semantics for Sample and Observe. The
most basic interpretation of a model, as a generative process
with no inference, is usually called simulating (or sampling

from) the model, and can be de�ned as the composition of
the handlers shown in Fig. 5. The handler defaultObserve (triv-
ially) interprets Observe d y operations to return the observed
value y, via the continuation. The handler defaultSample inter-
prets Sample d operations, as long as IO is also present in the
e�ect signature, by �rst drawing a random value r uniformly
from the interval [0, 1] using the IO function random, and
then generating a sample from d using draw. Lastly, the func-
tion runIO discharges the �nal IO e�ect by simply extracting
and sequencing the IO actions, running the computation as
a top-level Haskell program.

2 Inference Patterns

Our approach to programmable inference builds on the gen-
eral embedding of extensible e�ects from §1.1 and proba-
bilistic models from §1.2. Our key insight is that algebraic
e�ects seem to be a natural �t for two kinds of extensibility
central to programmable inference. First, representing mod-
els as (reinterpretable) e�ectful computations allows them
to be assigned semantics tailored to speci�c algorithms. For
example, we can instrument models to produce the traces
needed for Metropolis-Hastings (§3), or arrange for models

47

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

simulate :: Model a→ IO a

simulate = runIO ◦ defaultSample ◦ defaultObserve

defaultObserve :: Handler Observe es a a

defaultObserve = handle Val hop where

hop (Observe d y) k = k y

defaultSample :: IO ∈ es⇒ Handler Sample es a a

defaultSample = handle Val hop where

hop (Sample d) k = do r ← call random; k (draw d r)

runIO :: Comp [IO] a→ IO a

runIO (Val x) = pure x

runIO (Op op k) = fromJust (prj op) >>= runIO ◦ k

random :: IO Double

Figure 5. E�ect handlers for model simulation

to execute stepwise rather than to completion for particle
�lters (§4). Second, we can take a similar view of the algo-
rithms themselves. By representing the key actions of each
broad approach to inference as reinterpretable “inference
operations” — for example resampling, in the case of particle
�lters — we can turn them into extension points that can
be given di�erent meanings by di�erent members of the
same broad family of algorithms. Deriving a concrete infer-
ence algorithm is then a matter of supplying appropriate
interpreters for the model and for the inference operations
themselves. Moreover these extension points advertise to
non-experts the key steps in the algorithms.

As well as o�ering a modular and programmable approach
to algorithm design, this perspective also provides a useful
conceptual framework for understanding inference. For ex-
ample, Metropolis-Hastings and particle �lters might look
quite di�erent algorithmically, but our approach provides a
uniform way of looking at them: each can be understood as
an abstract algorithm, parameterised by a model interpreter,
and expressed using abstract operations whose interpreta-
tion is deferred to concrete implementations. This informal
organisational structure we call an inference pattern, and is
shown on the left-hand side of Fig. 6; a library designer de-
veloping their own abstract inference algorithms using our
approach would most likely follow this high-level template.
We now �esh out the idea of an inference pattern a little
before turning to the patterns we developed for this paper.

Inference pa�erns. The core of an inference pattern (see
Fig. 6, left) is an abstract algorithm expressing an inference
procedure. Taking inspiration from the parallelism literature
[10], we call this an inference skeleton. Inference skeletons
depend on algebraic e�ects in two essential ways. First, each
skeleton is parameterised by a model interpreter, giving con-
crete algorithms control over model execution; second, the
skeleton is expressed in terms of abstract inference opera-
tions unique to the pattern, which act as additional extension

points where concrete algorithms can plug in speci�c be-
haviour.

The model interpreter has a model interpreter type, whose
exact form depends on the pattern, but is roughly:

type ModelExec a b = Model a→ IO b

and is used by the skeleton to fully interpret the model into
an IO action on each iteration. Having the inference skeleton
execute the model all the way to an IO action allows the
model and inference algorithm to have distinct e�ect sig-
natures. Assuming inference operations with concrete type
InfE�ect, a skeleton will have a type resembling:

infSkeleton :: (InfE�ect ∈ fs, IO ∈ fs)

⇒ ModelExec a b→ Model a→ Comp fs b

where fs contains only the e�ects speci�c to the algorithm.
If instead the skeleton were to incorporate the e�ects of the
model into its own computation, and the interpretation of the
model deferred until the handling of the inference operations,
fs would need to include model operations like Observe and
Sample, and the resulting computation trees would be much
larger. Keeping the e�ect signatures distinct makes for a
more modular and e�cient design.

Pa�ern instances. A pattern instance (Fig. 6, right) pro-
vides a concrete algorithm. It instantiates an inference skele-
tonwith a speci�cmodel interpreter, determining the speci�c
model execution semantics to be used, and then composes
the result with an inference handler providing a speci�c in-
terpretation of the inference operations. Pattern instances
may also have auxiliary de�nitions.

We use this informal template to present our two inference
patterns: Metropolis-Hastings (§3) and Particle Filter (§4),
along with concrete instances illustrating the compositional-
ity and programmability of the approach. These are available
in an open source Haskell library. 1

3 Inference Pattern: Metropolis-Hastings

Metropolis-Hastings algorithms repeatedly draw samples
from a chosen “proposal” distribution. How these samples
are generated is controlled by an accept/reject scheme, deter-
mining whether to accept a new proposal and thus move to
a new con�guration, or to reject it and remain in the current
con�guration. Under certain standard assumptions, then,
these samples yield a Markov chain that converges to the
target posterior. (Here we only consider the case where the
proposal distribution is the actual model we are performing
inference over.)
The key operations of the algorithm are proposing and

accepting/rejecting proposals. To expose them as extension
points, we represent them by the inference e�ect Propose w
in Fig. 7. The parameter w is a particular representation of

1 github.com/min-nguyen/prob-fx-2

48

https://github.com/min-nguyen/prob-fx-2

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

Inference Pattern

Inference skeleton

Abstract inference algorithm. Given a model and a model interpreter,
yields a computation expressed in terms of inference operations.

Inference operations

Operations speci�c to inference pattern, e.g. proposal or resampling.

Model interpreter type

Pattern-speci�c type of model interpreters, which assign meaning
to Sample and Observe and execute a model to an IO action.

Pattern Instance

Concrete algorithm

Instantiates the inference skeleton with a model interpreter, and
post-composes with an inference handler.

Inference handler

Assigns a semantics to each inference operation.

Model interpreter

Interprets a model with semantics speci�c to a concrete algorithm.

Figure 6. Inference patterns (left) and pattern instances (right)

probability, or weight; the datatype Trace represents propos-
als. A trace �xes a subset of the stochastic choices made by
a model, which is key to how the algorithm controls where
samples are drawn from.
The inference skeleton mh n g0 executes n abstract itera-

tions of Metropolis-Hastings, iterating mhStep to generate a
Markov chain of length n, from a (typically empty) starting
trace g0. The head of the Markov chain (x, (F , g)) represents
the current con�guration; x is the sample last drawn from
the model, g is the trace for that model run, and F is an
associated weight of type w, representing the probability
density at g . First, mhStep calls Propose g to generate a new
proposal g† derived from g . Then, the model interpreter exec
is used to run the Model (Fig. 4), using the information in
g† to �x stochastic choices, and resulting in a new trace g ′

and associated weight F ′. The new trace contains at least as
much information as g†, but additionally stores any choices
not determined by g†. The result of exec is an IO computa-
tion, which is inserted into the computation tree using call.
Finally, mhStep calls Accept to determine whether the new
con�guration is by some (unspeci�ed) measure “better” than
the current one, returning it if so, and otherwise retaining
the current.
To �x stochastic choices, a trace must associate to each

Sample operation enough information to determinise that
sample. This can be achieved in various ways, but here we
assume that Sample nodes are identi�ed by addresses U [33]
of abstract type Addr, either generated behind the scenes or
manually assigned by the user; a trace is then a map from
addresses to random values r ∈ [0, 1] providing the source
of randomness for drawing the sample associated with a
given address. The Sample handler reuseTrace g is used for
executing a model under a trace g : it generates the draw
using the stored random value for U if there is one, and
otherwise generates a fresh value r which is recorded in an
updated trace. Since draw is pure, executing a model under a
�xed (and su�ciently large) trace is deterministic, allowing
the generative behaviour of the model to be controlled by
providing it a speci�c trace. The reuseTrace handler is thus

Inference Pattern: Metropolis-Hastings

Inference skeleton

mh :: (Propose w ∈ fs, IO ∈ fs)

⇒ Int→ Trace→ ModelExec w a→ Model a

→ Comp fs [(a, (w, Trace))]

mh n g0 exec model = do

let mhStep i chain

| i < n = do

let (x , (F , g)) = head chain

g† ← call (Propose g)

(x′, (F ′, g ′)) ← call (exec g† model)

nodei+1 ← call (Accept (x, (F , g)) (x′, (F ′, g ′)))

mhStep (i + 1) (nodei+1 : chain)

| otherwise = pure chain

node0← call (exec g0 model) −− initialise first node

mhStep 0 [node0]

Inference operations

data Propose w a where

Propose :: Trace → Propose w Trace

Accept :: (a, (w, Trace)) → (a, (w, Trace))

→ Propose w (a, (w, Trace))

Model interpreter type

type ModelExec w a = Trace → Model a→ IO (a, (w, Trace))

Auxiliary definitions

type Trace = Map Addr Double

reuseTrace :: IO ∈ es ⇒ Trace→ Handler Sample es a (a, Trace)

reuseTrace g0 = handleWith g0 (_g
′ x→ Val (x, g ′)) hop where

hop g (Sample d U) k = do r ← call random

let (r′, g ′) = findOrInsert U r g

k g ′ (draw d r′)

Figure 7. Inference Pattern: Metropolis-Hastings

a reusable “inference component” which can be used by
concrete instances of Metropolis-Hastings, of which we now
present two examples: Independence Metropolis (§3.1) and
Single-Site Metropolis-Hastings (§3.2).

49

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

Pattern Instance: Independence Metropolis

Concrete algorithm

im :: Int → Model a→ IO [(a, (LogP, Trace))]

im n = runIO ◦ handleProposeim ◦ mh n empty execModelim

Inference handler

handleProposeim :: IO ∈ fs⇒ Handler (Propose LogP) fs a a

handleProposeim = handle Val hop where

hop (Propose g) k = do g ′← mapM (const (call random)) g

k g ′

hop (Accept r@(_, (F , _)) r′@(_, (F ′, _))) k

= do let ratio = F ′ −F

u ← call random

k (if exp ratio ≥ u then r′ else r)

Model interpreter

execModelim :: ModelExec LogP a

execModelim g = rassoc ◦ runIO ◦ reuseTrace g ◦ likelihood

Auxiliary definitions

likelihood :: Handler Observe es a (a, LogP)

likelihood = handleWith 0 (_F x→ Val (x,F)) hop where

hopF (Observe d y U) k = k (F + logProb d y) y

rassoc = fmap (_((x,F), g)→ (x, (F , g)))

Figure 8. Pattern Instance: Independence Metropolis

3.1 Pattern Instance: Independence Metropolis

Fig. 8 de�nes a simple Metropolis-Hastings variant called
Independence Metropolis, where each iteration proposes an
entirely new set of samples, and determines whether the pro-
posal is accepted by comparing its likelihood with the previ-
ous iteration. This specialises the weight type w in Propose w

and ModelExec w a to the type LogP for log likelihoods.
The handler handleProposeim interprets Propose by map-

ping new random values over the entire trace. (One can
equivalently return the empty trace, but our particular ap-
proach becomes useful for Particle Metropolis-Hastings in
§4.3.) To interpret Accept, we compute the likelihood ratio
between the current and previous iteration, and accept only
if greater than a random point in the interval [0, 1].
For model execution, likelihood handles Observe by sum-

ming the log likelihood F over all observations with 0 as the
starting value. The full IndependenceMetropolis algorithm is
then derivable by providingmhwith a number of iterations n,
the empty map as the initial trace, and the model interpreter,
before post-composing with handleProposeim and runIO to
yield a Markov chain of n proposals for a given model.

3.2 Pattern Instance: Single-Site Metropolis-Hastings

The rate of accepted proposals in Independence Metropolis
su�ers as more variables are sampled from: because each
proposal generates an entirely new trace, achieving a high
likelihood means sampling an entire set of likely proposals.

Pattern Instance: Single-Site Metropolis-Hastings

Concrete algorithm

ssmh :: Int → Trace→ Model a→ IO [(a, (LPTrace, Trace))]

ssmh n g = runIO ◦ handleProposessmh ◦ mh n g execModelssmh

Inference handler

handleProposessmh :: IO ∈ fs⇒ Handler (Propose LPTrace) fs a a

handleProposessmh = handleWith U0 (const Val) hop where

hop _ (Propose g) k

= do U ← call (randomFrom (keys g))

r ← call random

k U (insert U r g)

hop U (Accept (x, (F , g)) (x′, (F ′, g ′))) k

= do let ratio = (sum ◦ elems ◦ delete U)

(intersectionWith (−) F ′ F)

+ log (size g) - log (size g ′)

u ← call random

k U (if exp ratio ≥ u then (x′, (F ′, intersection g ′F ′))

else (x, (F , g)))

Model interpreter

execModelssmh :: ModelExec LPTrace a

execModelssmh g

= rassoc ◦ runIO ◦ reuseTrace g ◦ defaultObserve ◦ traceLP

Auxiliary definitions

type LPTrace = Map Addr LogP

traceLP :: (Observe ∈ es, Sample ∈ es)

⇒ Comp es a→ Comp es (a, LPTrace)

traceLP = loop empty where

loop F (Val x) = Val (x , F)

loop F (Op op k)

| Just (Observe d y U)← prj op

= Op op (_x→ loop (insert U (logProb d x)F) (k x))

| Just (Sample d U) ← prj op

= Op op (_x→ loop (insert U (logProb d x)F) (k x))

| otherwise = Op op (loopF ◦ k)

randomFrom :: [a] → IO a

Figure 9. Pattern Instance: Single-Site Metropolis-Hastings

Fig. 9 de�nes Single-Site Metropolis-Hastings [35], which
uses an alternative semantics for model execution and in-
ference: proposing just one sample per iteration, and other-
wise reusing samples from the previous iteration. The accep-
tance/rejection scheme is also slightly di�erent, comparing
individual probabilities of Sample and Observe operations
with respect to the proposed sample. This specialises the
weight type w of Propose w to LPTrace, mapping addresses to
their log probabilities.

The handler handleProposessmh threads an address U , identi-
fying the sample currently being proposed. (The initial value
of this argument is unused, so we supply an arbitrary value
U0.) For Propose, we use a helper randomFrom to select a new

50

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

address U uniformly from the keys of trace g , and then return
g updated with a new random value for U . For Accept, the
acceptance ratio between F ′ and F is computed for corre-
sponding addresses by intersectionWith (−), using delete U to
exclude the current proposal site, and also accounting for
the ratio of sizes between the two traces. 2 If the new trace g ′

is accepted then intersection g ′ F ′ clears all unused samples
from it, given thatF ′ will only ever store addresses relevant
to the model’s execution, as described next.
The semantics for model execution di�ers only slightly

from Independence Metropolis. Instead of summing the log
probabilities of Observe operations, we record the log proba-
bilities of all Observe and Sample operations encountered into
a fresh map F of type LPTrace, via the handler traceLP shown
in Fig. 9. This deviates from the normal handler pattern,
matching on the result of prj op (§1) to intercept operations
of di�erent e�ect types but leaving them unhandled. Here we
simply modify the continuation k to store the log probability
of the operation’s result. The case of prj returning Nothing

follows the same pattern as decomp returning Le� in Fig. 3.
All conditioning side-e�ects are in fact taken care of by

traceLP, so the residual Observe operations are handled by
defaultObserve to simply return the observed values, and
the Sample operations by reuseTrace as before; the interpreted
model has type IO (a, (LPTrace, Trace)), containing the �nal log
probability and execution traces. We now have the parts to
derive Single-Site Metropolis-Hastings from the mh pattern.

4 Inference Pattern: Particle Filter

Particle �lters [12] generate samples from the posterior by
considering partial model executions. The idea is to spawn
multiple instances of the model called particles, and then
repeatedly switch between (i) running the various particles
in parallel up to their next observation, and (ii) subjecting
them to a resampling process [18]. Resampling is a stochastic
strategy for �ltering out particles whose observations are
deemed unlikely to have come from the posterior, i.e. are
weighted lower than other particles. Ideally, after many re-
sampling steps, only particles that closely approximate the
posterior will remain.

A particle �lter con�guration is a list of (particle, weight)
pairs of type (Model a, w). The key operation is resampling,
which transforms a con�guration by discarding some parti-
cles and duplicating others, but usually keeping the number
of particles constant; we expose this as an extension point
via the inference e�ect type Resample w in Fig. 10. The model
interpreter type ModelStep w a for particle �lter is distinc-
tive because it characterises particle steppers, which partially

2 By using intersectionWith (-), we assume that each execution of the model
encounters the same (addresses of) Observe operations, which is a common
assumption in probabilistic programming languages.

Inference Pattern: Particle Filter

Inference skeleton

pfilter :: (Resample w ∈ fs, IO ∈ fs)

⇒ Int→ w→ModelStep w a→Model a→ Comp fs [(a, w)]

pfilter nF0 step model = pfStep (replicate n (model,F0))

where pfStep pFs = do

pFs′ ← call (mapM step pFs)

case done pFs′ of

Just rs → Val rs

Nothing → call (Resample pFs′) >>= pfStep

Inference operations

data Resample w a where

Resample :: [(Model a, w)] → Resample w [(Model a, w)]

Model interpreter type

type ModelStep w a = (Model a, w) → IO (Model a, w)

Auxiliary definitions

done :: [(Model a, w)] → Maybe [(a, w)]

done ((Val x , F) : pFs) = done pFs >>= Just ◦ ((x, F) :)

done (_ : _) = Nothing

done [] = Just []

advance :: LogP

→ Handler Observe es a (Comp (Observe : es) a, LogP)

advanceF (Val x) = Val (Val x , F)

advanceF (Op op k) = case decomp op of

Le� (Observe d y _) → Val (k y, F + logProb d y)

Right op4B → Op op4B (advanceF ◦ k)

Figure 10. Inference Pattern: Particle Filter

execute particles: a particle stepper resumes a suspended par-
ticle with weight w, executes it by some unspeci�ed amount,
and returns an updated particle and weight.

The inference skeleton pfilter nF0 describes a generic par-
ticle �lter, recursively running a set of n particles with a
starting weight of F0 until termination using pfStep, at each
iteration using the particle stepper step to obtain a new con-
�guration pFs′. The function done examines the new con�g-
uration to determine whether all particles have terminated,
in which case the return values and �nal weights of the
particles rs are returned, or whether some particles are still
executing, in which case the algorithm calls Resample on the
con�guration and continues with the �ltered result.

The handler advance is a reusable inference component for
implementing particle steppers. Given an initial weight F , it
advances a particle to the next Observe, returning the rest of
the computation k y unhandled, along with the accumulated
weight at that point. Matching on Val instead means the
particle has terminated, and so is returned alongside its �nal
weight. Notice that advance is not implemented in terms of
handle; this is because handle produces a “deep” handler [17]
which discharges the handled e�ect from the e�ect signature,

51

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

Pattern Instance: Multinomial Particle Filter

Concrete algorithm

mulpfilter :: Int → Model a→ IO [(a, LogP)]

mulpfilter n

= runIO ◦ handleResamplemul ◦ pfilter n 0 stepModelmul

Inference handler

handleResamplemul :: IO ∈ fs⇒ Handler (Resample LogP) fs a a

handleResamplemul = handle Val hop where

hop (Resample pFs) k = do

let (ps , Fs) = unzip pFs

(Fsnorm,Fs) = (normaliseFs, logMeanExpFs)

idxs ← call (replicateM (length ps) (categoricalFsnorm))

k (map ((,Fs) ◦ ps‼) idxs)

Model interpreter

stepModelmul :: ModelStep LogP a

stepModelmul (p,F) = (runIO ◦ defaultSample ◦ advanceF) p

Auxiliary definitions

normalise :: [LogP]→ [LogP]

logMeanExp :: [LogP]→ LogP

categorical :: [LogP]→ IO Int

Figure 11. Pattern Instance: Multinomial Particle Filter

and so does not support the shallow (partial) handling needed
for suspensions.

We now present two instances of Particle Filter: Multino-
mial Particle Filter (§4.1) and Resample-Move Particle Filter
(§4.2), the latter constructed using Metropolis-Hastings. We
also present Particle Metropolis-Hastings (§4.3), an instance
of Metropolis-Hastings constructed using Particle Filter.

4.1 Pattern Instance: Multinomial Particle Filter

Many basic variants of particle �lters can be implemented by
recording just the log probabilities of particles, specialising
w in Resample w andModelStep w to LogP. A popular example
is a particle �lter that uses a “multinomial resampling” algo-
rithm, de�ned in Fig. 11. To interpret Resample pFs, contain-
ing = particles ps and their weightsFs, we use the categorical
distribution to draw = integers from the range 0 ... = − 1 with
log probabilities corresponding to the normalised weights
Fsnorm. These integers indicate the positions of particles to
continue executing with, which are extracted by indexing
with (‼), and then uniformly paired with the log mean of the
weights, Fs; it is expected for particles with higher weight
to be selected more than once, and unlikely ones pruned.
For model execution, Observe is handled by advance, and

Sample simply by defaultSample for drawing random values.
Then we can derivemulpfilter by using pfilter n 0 handleParticle

to construct an abstract particle �lter of n particles with start-
ing weight 0, and composing with (runIO ◦ handleResamplemul)

to specialise to a multinomial particle �lter that generates n
samples from the posterior and their �nal weights.

Pattern Instance: Resample-Move Particle Filter

Concrete algorithm

rmpf :: Int → Int→ Model a→ IO [(a, PState)]

rmpf n m model = (runIO ◦ handleResamplermpf m model

◦ pfilter n (0, empty) stepModelrmpf) model

Inference handler

handleResamplermpf :: IO ∈ fs

⇒ Int→ Model a→ Handler (Resample PState) fs a a

handleResamplermpf m model = handleWith 0 (const Val) hop

where

hop t (Resample pFgs) k = do

let (Fs, gs) = (unzip ◦ map snd) pFgs

(Fsnorm,Fs) = (normalise Fs, logMeanExpFs)

idxs ← call (replicateM (length gs) (categorical Fsnorm))

let gsres = map (gs ‼) idxs

modelt = suspendA�er t model

k (t + 1) =<< forM gsres (_g → do

(pmov, (_, gmov)) : _← call (ssmh m g modelt)

pure (pmov, (Fs, gmov)))

Model interpreter

stepModelrmpf :: ModelStep PState a

stepModelrmpf (p, (F , g))

= (rassoc ◦ runIO ◦ reuseTrace g ◦ advanceF) p

Auxiliary definitions

type PState = (LogP, Trace)

suspendA�er :: Observe ∈ es

⇒ Int→ Comp es a→ Comp es (Comp es a)

suspendA�er _ (Val x) = Val (Val x)

suspendA�er t (Op op k) = case prj op of

Just (Observe d y _) → if t ≤ 0 then Val (k y)

else Op op (suspendA�er (t - 1) ◦ k)

Nothing → Op op (suspendA�er t ◦ k)

Figure 12. Pattern Instance: Resample-Move Particle Filter

4.2 Pattern Instance: Resample-Move Particle Filter

Complex inference problems often require the programmer
to combine di�erent top-level inference procedures, each
addressing a di�erent sub-problem. For example, the resam-
pling step in particle �ltering can result in many particles
becoming the same, limiting the range of values sampled
from the posterior, a problem called particle degeneracy. One
solution is to use Metropolis-Hastings proposals to “move
around” the sampled values of each particle after resampling,
an approach called the Resample-Move Particle Filter [15].
This kind of wholesale algorithm reuse is also supported in
our framework, and we show this now by deriving Resample-
Move Particle Filter (Fig. 12) as an instance of Particle Fil-
ter, by providing a Resample handler which calls Single-Site
Metropolis-Hastings (§3.2).

52

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

To specialise pfilter to use Metropolis-Hastings, we set the
weight parameter w to PState, now also storing the particle’s
execution trace to allow for proposals. To know how far to
execute a particle under a given proposal, the Resample han-
dler increments a state variable t at each Resample, tracking
the number of observations encountered so far in the model.

To handle Resample, we unzip the particle states into their
weights Fs and traces gs, using Fs to carry out multinomial
resampling as in Fig. 11 but for resampling a selection of
traces gsres. The helper suspendA�er then produces a copy
modelt of the model suspended after observation t, which
will let us instantiate new particles that resume at that point.
We execute modelt under each resampled trace in gsres for a
series of ssmh updates; the most recent update is taken, from
which the �nal moved particle pmov and its trace are used.

The model interpreter is simply a particle stepper which
uses reuseTrace instead of defaultSample to record/reuse the
particle’s trace. The concrete algorithm rmpf n m can then be
assembled from these parts, yielding a multinomial particle
�lter of n particles, where each resampling step is followed by
m Single-Site Metropolis-Hastings updates to each particle.

4.3 Pattern Instance: Particle Metropolis-Hastings

We now revisit the Metropolis-Hastings inference pattern
from §3, and show that our framework makes it equally easy
to reuse a particle �lter inside Metropolis-Hastings. In §3,
we only considered algorithms where the proposed traces g
�xed the values of all latent variables, fully determinising
the model. But often we only care about proposing a subset
of the trace, g\ for some variables of interest \ , allowing the
other latent variables to be freshly sampled. It then becomes
possible to use a particle �lter to run each proposal for many
di�erent simulations, averaging over the particles to compute
the likelihood used to accept or reject the proposal. This
is known as Particle Metropolis-Hastings [9] and is used
to reduce the variance of likelihood estimates of proposals.
Fig. 13 derives a version of this from the Metropolis-Hastings
pattern, providing a ModelExec that also calls a multinomial
particle �lter (§4.1), and reusing the Propose handler from
Independence Metropolis (§3.1).
The model interpreter takes a number of particles n and

trace g\ providing values for the latent variables of interest,
i.e. addresses \ . It begins by de�ning an internal particle
stepper which executes a particle to the next observation
as usual, but handles Sample with reuseTrace g\ so that each
particle uses �xed values for the latent variables in \ , using
fmap fst to ignore the updated trace. The particle stepper is
then used to instantiate a particle �lter otherwise identical
to the multinomial one, producing a list of particle outputs
xs and weights Fs. To conform to the ModelExec type for
Metropolis-Hastings, the model interpreter must return a
model result plus a weight and trace; for the model result
we draw an element of xs with probability proportional to
the weights, and for the weight we use the log mean of Fs.

Pattern Instance: Particle Metropolis-Hastings

Concrete algorithm

pmh :: Int→ Int→ [Addr]→Model a→ IO [(a, (LogP, Trace))]

pmh m n \ model = do

(_ , g)← (runIO ◦ reuseTrace empty ◦ defaultObserve) model

let g\ = filterKey (`elem` \) g

(runIO ◦ handleProposeim ◦ mh m g\ (execModelpmh n)) model

Model interpreter

execModelpmh :: Int→ ModelExec LogP a

execModelpmh n g\ model = do

let stepModelpmh :: ModelStep LogP a

stepModelpmh (p,F) = (fmap fst ◦ runIO

◦ reuseTrace g\ ◦ advanceF) p

(xs , Fs)← (fmap unzip ◦ runIO ◦ handleResamplemul

◦ pfilter n 0 stepModelpmh) model

let (Fsnorm,Fs) = (normaliseFs, logMeanExpFs)

idx ← categorical Fsnorm

pure (xs ‼ idx, (Fs, g\))

Figure 13. Pattern Instance: Particle Metropolis-Hastings

For the trace, we return g\ rather than the possibly extended
trace returned by reuseTrace, to avoid �xing stochastic choices
other than those in g\ (when handling Propose in §3.1).

The algorithm pmh m n \ then describes m Independence
Metropolis proposals for addresses \ , but where each pro-
posal is weighted by simulating the model as n particles. The
�rst two lines initialise g\ , using reuseTrace empty to populate
an empty trace, and then �ltering to the addresses in \ .

5 Performance Evaluation

Before considering howwell our approach achieves the goals
set out in §1, we consider how practical it is for actually run-
ning inference. This section shows that our implementation
is capable of competing with real-world probabilistic pro-
gramming systems, suggesting that the choice of algebraic
e�ects as a foundation does not imply a compromise on per-
formance. We compare with two state-of-the-art systems
designed with programmable inference as an explicit goal:
MonadBayes3 [31], a Haskell library that uses a monad trans-
former e�ect system, and Gen4 [8], an embedded language
in Julia.

We compared themean execution times of four algorithms:
Single-Site Metropolis-Hastings (SSMH), Multinomial Par-
ticle Filter (MPF), Particle Metropolis-Hastings (PMH), and
Resample-Move Particle Filter (RMPF). Each algorithm is
applied across three types of model: linear regression, hid-
den Markov model, and Latent Dirichlet allocation. These
experiments were carried out on an Intel Core i7-9700 CPU
with 16GB RAM.

3 github.com/tweag/monad-bayes 4 github.com/probcomp/Gen.jl

53

https://github.com/tweag/monad-bayes
https://github.com/probcomp/Gen.jl

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

(a) Execution times of inference algorithms (top) with varying number of algorithm iterations or particles. The right-hand axis �xes the
number of observations. PMH-50 indicates 50 MH updates that vary in the number of particles, and RMPF-10 indicates 10 particles that vary
in the number of MH updates.

(b) Execution times of inference algorithms (right) with varying number of observations. The right-hand axis �xes the number of algorithm
iterations or particles. PMH-50-10 indicates 50 MH updates that use 10 particles; RMPF-10-1 indicates 10 particles that use 1 MH update.

Figure 14. Performance comparison of our system, ProbFX, with MonadBayes and Gen in terms of mean execution times. The
number of executions per mean is left to the control of the benchmarking suites, Criterion (Haskell) and BenchmarkTools.jl
(Julia). Truncated line plots indicate an algorithm being killed early by the host machine for certain benchmark parameters.
Missing line plots indicate an algorithm not being readily implemented in the system.

54

https://hackage.haskell.org/package/criterion
https://github.com/JuliaCI/BenchmarkTools.jl

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

On average, we outperform either one or both of the other
systems across all algorithms, sometimes asymptotically or
by several orders of magnitude. When varying the number
of iterations performed or particles used by each algorithm
in Fig. 14a, our performance scales linearly across all models.
Our performance remains linear when varying the number of
observations provided to models in Fig. 14b, except for RMPF
where, like MonadBayes and Gen, we scale quadratically.

Against MonadBayes, for SSMH we are on average 15x

slower for linear regression, and 1.8x faster for other mod-
els. The former result is likely because of the speci�c linear
regression model used, which varies only in the number of
observe operations, and in contrast to our implementation,
their version of SSMH does not store log weights for indi-
vidual observations, but instead simply sums over them. For
MPF, PMH, and RMPF, we average faster by 27x, 16x, and 4.9x

across all models. When increasing the number of particles
in MPF and PMH, the runtime of MonadBayes scales quadrat-
ically, and the process is killed when more than a moderate
number of particles are used. We suspect this is due to their
use of the ListT monad transformer to represent collections
of particles, which in our experience scales poorly as the size
of the transformer stack grows.
Comparing with Gen, we are roughly 1.1x and 72x faster

for SSMH and MPF, the latter arising mainly because Gen’s
MPF implementation scales quadratically with the number
of model observations, and for RMPF, we are on average
2.9x slower. We do not compare PMH since it is not directly
provided in Gen, and so leave this to future work.

6 Qualitative Comparison

§1 identi�ed two key forms of extensibility central to pro-
grammable inference, of which we have seen several exam-
ples in the preceding sections:

1. Reinterpretablemodels.Di�erent algorithms require cus-
tom semantics for how models sample and observe, as well
as �ne-grained control over model execution in order to
implement essential behaviours like suspended particles
and tracing. “Programmability” here means being able to
easily customise how models execute in order to derive
or adapt inference algorithms.

2. Modular, reusable algorithms.Di�erent algorithms from
the same broad family implement key behaviours like re-
sampling or proposing di�erently. “Programmability” here
means being able to plug alternative behaviours into an ex-
isting algorithm without reimplementing it from scratch,
but also being able to de�ne new abstract algorithms that
are easily pluggable in this way.

Given that inference programming is often undertaken by
domain experts, for whom the activity may primarily be a
means to an end, programmability matters. Here we look at
how programmability is achieved in existing systems, brie�y

considering dynamically typed settings in § 6.1, and then
turning in more detail to MonadBayes in § 6.2, the main
existing system based on typed e�ects.

6.1 Dynamically Typed Approaches

Most programmable inference systems to date have been
implemented in dynamic languages. We consider Venture,
Gen, Pyro, and Edward; other mainstream systems like An-
glican [33] and Turing [14] were not designed with inference
programming in mind.

Reinterpretable models. In Venture [24], modelling and
inference instructions are interleaved, with the inference
code a�ecting the semantics of preceding modelling code;
this is �exible but lacks a clear delination between model and
inference. Gen (in Julia) provides a black-box interface for
interacting with models, exposing capabilities such as simu-
lating and tracing, but the operations are non-programmable
(have �xed meanings). Pyro [5] and Edward [27] (in Python)
are more �exible, relying on a stack of programmable corou-
tines that are sequentially invoked by sample and observe calls;
this has some �avour of algebraic e�ects, allowing bespoke
semantics for sample and observe, albeit without a type disci-
pline for tracking e�ects and associating them to handlers,
and requiring global state to maintain the coroutine stack.

Control over model execution is realised in di�erent ways.
For particle stepping, Gen requires the programmer to man-
age this themselves, parameterising their model on the num-
ber of steps to be executed. In Pyro, the programmer must
implement a method step for any model they want to execute
in this way. Other dynamic languages rely on continuation-
passing-style transformations [16, 33]. Algebraic e�ects seem
to o�er a clear advantage here, providing handlers with ac-
cess to the continuation and making idioms like stepwise
execution easy to implement in inference code, rather than
requiring any changes to models.

Modular, reusable algorithms. Venture o�ers a range
of high-level inference procedures as reusable primitives,
but new inference primitives must be written in Venture’s
DSL, which cannot reuse external inference code. In Gen,
Pyro, and Edward, the inference libraries are implemented
using regular host-language functions. While technically
reusable, the lack of an e�ect discipline means these func-
tions tend to mix arbitrary computation with model inter-
actions, rather than being organised explicitly around the
key operations of the algorithm, making them challenging
to reuse in new contexts.

6.2 MonadBayes

MonadBayes is a Haskell library for typed programmable
inference based on the Monad Transformer Library (MTL).
MTL is an imperative programming framework that allows
the programmer to stack monads, producing a combined
e�ect consisting of “layers” of elementary monadic e�ects

55

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

Sampling and observing as type class methods

class Monad m⇒ MSamp m where

rand :: m Double

class Monad m⇒ MCond m where

score :: LogP→ m ()

Monad for weighting a model

data Weighted m a = W (StateT LogP m a)

instance MSamp m⇒ MSamp (Weighted m) where

rand = li� ◦ rand

instance Monad m⇒ MCond (Weighted m) where

score w = W (modify (+ w))

Monad for tracing a model

data Traced m a = Tr (Weighted (FreeT SamF m) a) (m (Trace′ a))

instance MSamp m⇒ MSamp (Traced m) where

rand = Tr rand (fmap singleton rand)

instance MCond m⇒ MCond (Traced m) where

score w = Tr (score w) (score w >> pure (score w))

(a) MonadBayes

Sampling and observing as data constructors

data Sample a where

Sample :: Dist d a ⇒ d→ Sample a

data Observe a where

Observe :: Dist d a ⇒ d→ a→ Observe a

Handler for weighting a model

likelihood :: Handler Observe es a (a , LogP)

likelihood = handleWith 0 (_w x→ Val (x, w))

(_w (Observe d y) k → k (w + logProb d y) y)

Handler for tracing a model

reuseTrace :: Trace → Handler Sample es a (a , Trace)

reuseTrace g0 = handleWith g0 (_g x→ Val (x, g))

(_g (Sample d U) k→ do r← call random

let (r′, g′) = findOrInsert U r g

k g
′ (draw d r′))

(b) Our library

Figure 15. Support for reinterpretable models

called monad transformers [21]. A given set of monads may
be layered in di�erent ways; moreover layers can be abstract,
with their operations de�ned by a type class. To invoke an
operation of a speci�c abstract monad m from the stack, the
user (or library) must de�ne how each monad transformer
above m relays that operation call further down the stack. A
program written in MTL, whose type is an abstract stack of
monad transformers, determines its semantics by instantiat-
ing to a particular concrete stack.

Reinterpretablemodels. InMonadBayes, reinterpretable
models are provided by MTL’s support for abstract monad
stacks. The constrained type (MSamp m, MCond m)⇒ m a rep-
resents a model, where the type constructor m is an abstract
stack of monad transformers, each providing semantics for
sampling (rand) and observing (score) by implementing the
type classes MSamp and MCond in Fig. 15a. Following the
usual MTL pattern, each concrete monad must either give a
concrete behaviour for rand and/or score, or relay that oper-
ation to a monad further down the stack. For example, the
Weighted m monad is for weighting a model m; it updates a
stored weight when observing with score, but simply dele-
gates any calls to rand to its contained monad m, using li�.
The analogue of MSamp and MCond in our library are the
concrete datatypes Sample and Observe in Fig. 15b, whose
operations are also abstract (now as data constructors), but
with semantics given by e�ect handlers rather than class
instances; the counterpart to the Weighted m monad is the
likelihood handler which interprets Observe to accumulate
a weight. The analogue of relaying comes “for free” in the
algebraic e�ects implementation, via handleWith (§1).
While monad transformers are both compositional and

type-safe, the network of relaying that arises in MonadBayes

is non-trivial. More than one concrete monad in the stack
may provide sample and observe behaviours (such as Traced
in Fig. 15a, which recursively applies rand and score to its
components); others may opt not to relay. As relaying is
carried out implicitly, via type class resolution, the eventual
runtime behaviour of a model may not be obvious. With
algebraic e�ects, the correspondence between operations
and their semantics is usually more evident, in the form of
handlers, such as the reuseTrace and likelihood handlers in
Fig. 15b which provide semantics for Sample and Observe.

For control over model execution e.g. for particle stepping,
MonadBayes requires the programmer to use speci�c con-
trol e�ects, namely the free monad transformer FreeT and
the Coroutine monad. Although model authors are oblivious
to this particular detail, inference code can still require a
signi�cant amount of plumbing which can obscure the key
operations of the algorithm. Algebraic e�ects instead pro-
vide access to the continuation in each handler, allowing the
advertised e�ect signature to remain domain-speci�c.

Modular, reusable algorithms. The reusable building
blocks in MonadBayes are datatypes that implement the type
classes MSamp and MCond from Fig. 15a, such as Weighted

and Traced. Inference algorithms are functions that instan-
tiate a model’s type from an abstract stack to a speci�c se-
quence of these datatypes. To illustrate, the (simpli�ed) type
of rmpf in Fig. 16a, read inside-out, instantiates the supplied
model to “list of weighted, traced executions”. This expresses
Resample-Move Particle Filter as a computation that nests
Metropolis-Hastings (using Traced) inside a particle �lter (us-
ing ListT for particles). Conversely, the type of pmh suggests

56

Haskell ’23, September 8–9, 2023, Sea�le, WA, USA Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay

rmpf :: Traced (Weighted (ListT IO)) a → ...

pmh :: Weighted (ListT (Traced IO)) a → ...

(a)MonadBayes

rmpf = handleResamplermpf ◦ pfilter stepModelrmpf where

stepModelrmpf = reuseTrace ◦ advance

pmh = handleProposeim ◦ mh execModelpmh where

execModelpmh = handleResamplemul ◦ pfilter stepModelpmh

(b) Our library

Figure 16. Support for inference as modular building blocks

that Particle Metropolis-Hastings uses a particle �lter in-
side Metropolis-Hastings. Thus the construction of inference
algorithms out of reusable parts is expressed primarily at
the type level: by selecting combinations of datatypes, one
determines the speci�c sampling and conditioning e�ects
that occur at run-time, and the order in which they interact.

Algebraic e�ects are similar in a way: the programmer also
selects an ordering of abstract operations when instantiating
the e�ect signature es in Comp es a. However, the operations’
semantics are not determined by the e�ect types themselves,
but are given separately by e�ect handlers. For instance,
the algorithm rmpf in Fig. 16b is implemented by choosing
a composition of handlers stepModelrmpf for executing the
model, plus a handler handleResamplermpf for the inference ef-
fect. Here, constructing inference algorithms out of reusable
parts is expressed mainly at the value level, via e�ect han-
dler composition.
While each of the concrete monads in MonadBayes is by

itself intuitive, for sophisticated algorithms like rmpf the
transformer stacks can become unwieldy. To extend an algo-
rithm with a new monad, perhaps with its own type class
operations, requires each existing monad in the stack to pro-
vide a corresponding instance, and the new monad in turn
to implement each supported operation in the stack. Thus
programmability comes with a certain cost in terms of the
amount of boilerplate required. With algebraic e�ects, sup-
port for new semantics is often more lightweight, requiring
only a new handler to de�ne the relevant operations. For
example by swapping out the Resample handler in multino-
mial particle �lter (§ 4.1), we were able to derive several
other variants not discussed in the paper such as residual
and systematic particle �lter [12], and also compose these
parts to form other algorithms like Resample-Move Particle
Metropolis-Hastings [7].

7 Conclusion and Future Work

Typed functional languages like Haskell o�er a type-safe and
compositional foundation for inference programming. How-
ever, the intersection of these paradigms can involve a steep
learning curve for individuals not already well versed in both.

This paper presented a technique based on algebraic e�ects
and operations for explicating the core structure of inference
algorithms, and e�ect handlers as an intuitive and modular
interface for programming them. We used this technique to
implement some o�-the-shelf algorithms in a modular way.

One area of future work is to explore the existing Haskell
support for automatic di�erentiation [22, 34] and its inter-
play with e�ect handlers, which would enable modern infer-
ence techniques like HMC [6] and variational autoencoders
[19] that require di�erentiable models. Another is to for-
malise some properties of our library. For example, Mon-
adBayes has modular proofs that ensure each of its monad
transformers correctly produces an “unbiased sampler” for
inference [32]; it may be possible to transfer the semantics
of monad transformers to an algebraic e�ect setting, perhaps
using work by Schrijvers et al. [29] that speci�es when one
is expressable in terms of the other. Finally, we are interested
in how e�ect handlers compare to “unembedding” [26] as
a technique for embedding abstract probabilistic programs;
this may allow regular Haskell-bound variables to be as-
signed the various non-standard semantics that come with
probabilistic languages, e.g. of random variables, or optimis-
able variables that make use of di�erentiation.

Acknowledgements

We thank the Bristol Programming Languages research group
for helping this work to thrive. This work is partly funded by
the EPSRC grant EXHIBIT: Expressive High-Level Languages
for Bidirectional Transformations (EP/T008911/1).

References
[1] Nathanael L Ackerman, Cameron E Freer, and Daniel M Roy. 2011.

Noncomputable conditional distributions. In 2011 IEEE 26th Annual

Symposium on Logic in Computer Science. IEEE, 107–116. h�ps://doi.

org/10.1109/LICS.2011.49

[2] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I
Jordan. 2003. An introduction toMCMC for machine learning.Machine

learning 50, 1 (2003), 5–43. h�ps://doi.org/10.1023/A:1020281327116

[3] Andrej Bauer andMatija Pretnar. 2015. Programming with algebraic ef-
fects and handlers. Journal of logical and algebraic methods in program-

ming 84, 1 (2015), 108–123. h�ps://doi.org/10.1016/j.jlamp.2014.02.001

[4] Isabel Beichl and Francis Sullivan. 2000. The metropolis algorithm.
Computing in Science & Engineering 2, 1 (2000), 65–69. h�ps://doi.org/

10.1109/5992.814660

[5] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal proba-
bilistic programming. The Journal of Machine Learning Research 20, 1
(2019), 973–978. h�ps://doi.org/10.5555/3322706.3322734

[6] Tianqi Chen, Emily Fox, and Carlos Guestrin. 2014. Stochastic gradi-
ent hamiltonian monte carlo. In International conference on machine

learning. PMLR, 1683–1691. h�ps://doi.org/10.48550/arXiv.1402.4102

[7] Nicolas Chopin, Pierre E Jacob, and Omiros Papaspiliopoulos. 2013.
SMC2: an e�cient algorithm for sequential analysis of state space
models. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 75, 3 (2013), 397–426. h�ps://doi.org/10.1111/j.1467-

9868.2012.01046.x

57

https://doi.org/10.1109/LICS.2011.49
https://doi.org/10.1109/LICS.2011.49
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1109/5992.814660
https://doi.org/10.1109/5992.814660
https://doi.org/10.5555/3322706.3322734
https://doi.org/10.48550/arXiv.1402.4102
https://doi.org/10.1111/j.1467-9868.2012.01046.x
https://doi.org/10.1111/j.1467-9868.2012.01046.x

E�ect Handlers for Programmable Inference Haskell ’23, September 8–9, 2023, Sea�le, WA, USA

[8] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and
Vikash K Mansinghka. 2019. Gen: a general-purpose probabilistic
programming system with programmable inference. In Proceedings of

the 40th acm sigplan conference on programming language design and

implementation. 221–236. h�ps://doi.org/10.1145/3314221.3314642

[9] Johan Dahlin, Fredrik Lindsten, and Thomas B Schön. 2015. Particle
Metropolis–Hastings using gradient and Hessian information. Statis-
tics and computing 25, 1 (2015), 81–92. h�ps://doi.org/10.1007/s11222-

014-9510-0

[10] John Darlington, Yi-ke Guo, HingWing To, and Jin Yang. 1995. Parallel
Skeletons for Structured Composition. SIGPLAN Not. 30, 8 (aug 1995),
19–28. h�ps://doi.org/10.1145/209937.209940

[11] P.M. Djuric, J.H. Kotecha, Jianqui Zhang, Yufei Huang, T. Ghirmai,
M.F. Bugallo, and J. Miguez. 2003. Particle �ltering. IEEE Signal

Processing Magazine 20, 5 (2003), 19–38. h�ps://doi.org/10.1109/MSP.

2003.1236770

[12] Arnaud Doucet, Adam M Johansen, et al. 2009. A tutorial on particle
�ltering and smoothing: Fifteen years later. Handbook of nonlinear

�ltering 12, 656-704 (2009), 3.
[13] Charles W Fox and Stephen J Roberts. 2012. A tutorial on variational

Bayesian inference. Arti�cial intelligence review 38, 2 (2012), 85–95.
h�ps://doi.org/10.1007/s10462-011-9236-8

[14] HongGe, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for
�exible probabilistic inference. In International Conference on Arti�cial

Intelligence and Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca,

Lanzarote, Canary Islands, Spain. 1682–1690. h�ps://doi.org/10.17863/

CAM.42246

[15] Walter R Gilks and Carlo Berzuini. 2001. Following a moving tar-
get—Monte Carlo inference for dynamic Bayesian models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 63, 1
(2001), 127–146. h�ps://doi.org/10.1111/1467-9868.00280

[16] Noah D Goodman. 2014. The Design and Implementation of Proba-
bilistic Programming Languages. h�p://dippl.org.

[17] Daniel Hillerström and Sam Lindley. 2018. Shallow e�ect handlers. In
Asian Symposium on Programming Languages and Systems. Springer,
415–435. h�ps://doi.org/10.1007/978-3-030-02768-1_22

[18] Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. 2006. On
resampling algorithms for particle �lters. In 2006 IEEE nonlinear statis-

tical signal processing workshop. IEEE, 79–82. h�ps://doi.org/10.1109/

NSSPW.2006.4378824

[19] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114 (2013). h�ps://doi.org/10.48550/

arXiv.1312.6114

[20] Oleg Kiselyov and Hiromi Ishii. 2015. Freer Monads, More Extensible
E�ects. In Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell

(Vancouver, BC, Canada) (Haskell ’15). Association for Computing
Machinery, New York, NY, USA, 94–105. h�ps://doi.org/10.1145/

2804302.2804319

[21] Oleg Kiselyov, Amr Sabry, and Cameron Swords. 2013. Extensible
e�ects: an alternative to monad transformers. ACM SIGPLAN Notices

48, 12 (2013), 59–70. h�ps://doi.org/10.1145/2578854.2503791

[22] Edward Kmett, Barak Pearlmutter, and Je�rey Mark Siskind. 2010-2021.
ad: Automatic Di�erentiation. Haskell package at h�ps://hackage.
haskell.org/package/ad.

[23] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers
and Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, USA) (POPL ’95). Association for Computing
Machinery, New York, NY, USA, 333–343. h�ps://doi.org/10.1145/

199448.199528

[24] Vikash Mansinghka, Daniel Selsam, and Yura Perov. 2014. Venture: a
higher-order probabilistic programming platform with programmable
inference. arXiv preprint (2014). h�ps://doi.org/10.48550/arXiv.1404.

0099

[25] Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey
Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic Program-
ming with Programmable Inference. SIGPLAN Not. 53, 4 (jun 2018),
603–616. h�ps://doi.org/10.1145/3296979.3192409

[26] Kazutaka Matsuda, Samantha Frolich, Meng Wang, and Nicolas Wu.
2023. Embedding by Unembedding. Proceedings of the ACM on

Programming Languages 7, ICFP, Article 189 (aug 2023). h�ps:

//doi.org/10.1145/3607830

[27] Dave Moore and Maria I Gorinova. 2018. E�ect handling for
composable program transformations in Edward2. arXiv preprint

arXiv:1811.06150 (2018). h�ps://doi.org/10.48550/arXiv.1811.06150

[28] Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu. 2022. Mod-
ular Probabilistic Models via Algebraic E�ects. Proceedings of the

ACM on Programming Languages 6, ICFP, Article 104 (aug 2022).
h�ps://doi.org/10.1145/3547635

[29] Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelio�. 2019.
Monad transformers and modular algebraic e�ects: what binds them
together. In Proceedings of the 12th ACM SIGPLAN International Sym-

posium on Haskell. 98–113. h�ps://doi.org/10.1145/3331545.3342595

[30] Adam Ścibior and Ohad Kammar. 2015. E�ects in Bayesian inference.
InWorkshop on Higher-Order Programming with E�ects (HOPE). h�ps:

//www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf

[31] Adam Ścibior, Ohad Kammar, and Zoubin Ghahramani. 2018. Func-
tional Programming for Modular Bayesian Inference. Proceedings of the
ACM on Programming Languages 2, ICFP, Article 83 (2018), 29 pages.
h�ps://doi.org/10.1145/3236778

[32] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K. Moss, Chris Heunen, and
Zoubin Ghahramani. 2017. Denotational Validation of Higher-Order
Bayesian Inference. Proc. ACM Program. Lang. 2, POPL, Article 60 (dec
2017), 29 pages. h�ps://doi.org/10.1145/3158148

[33] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank
Wood. 2016. Design and implementation of probabilistic programming
language anglican. In Proceedings of the 28th Symposium on the Im-

plementation and Application of Functional programming Languages.
1–12. h�ps://doi.org/10.1145/3064899.3064910

[34] Birthe van den Berg, Tom Schrijvers, James McKinna, and Alexander
Vandenbroucke. 2022. Forward-or Reverse-Mode Automatic Di�er-
entiation: What’s the Di�erence? Available at SSRN 4358090 (2022).
h�ps://doi.org/10.48550/arXiv.2212.11088

[35] DavidWingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Light-
weight implementations of probabilistic programming languages via
transformational compilation. In Proceedings of the Fourteenth Interna-

tional Conference on Arti�cial Intelligence and Statistics. JMLR Work-
shop and Conference Proceedings, 770–778.

Received 2023-06-01; accepted 2023-07-04

58

https://doi.org/10.1145/3314221.3314642
https://doi.org/10.1007/s11222-014-9510-0
https://doi.org/10.1007/s11222-014-9510-0
https://doi.org/10.1145/209937.209940
https://doi.org/10.1109/MSP.2003.1236770
https://doi.org/10.1109/MSP.2003.1236770
https://doi.org/10.1007/s10462-011-9236-8
https://doi.org/10.17863/CAM.42246
https://doi.org/10.17863/CAM.42246
https://doi.org/10.1111/1467-9868.00280
http://dippl.org
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.1109/NSSPW.2006.4378824
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2804302.2804319
https://doi.org/10.1145/2578854.2503791
https://hackage.haskell.org/package/ad
https://hackage.haskell.org/package/ad
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.48550/arXiv.1404.0099
https://doi.org/10.48550/arXiv.1404.0099
https://doi.org/10.1145/3296979.3192409
https://doi.org/10.1145/3607830
https://doi.org/10.1145/3607830
https://doi.org/10.48550/arXiv.1811.06150
https://doi.org/10.1145/3547635
https://doi.org/10.1145/3331545.3342595
https://www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf
https://www.cs.ubc.ca/~ascibior/assets/pdf/hope.pdf
https://doi.org/10.1145/3236778
https://doi.org/10.1145/3158148
https://doi.org/10.1145/3064899.3064910
https://doi.org/10.48550/arXiv.2212.11088

	Abstract
	1 Introduction
	1.1 Background: An Embedding of Extensible Effects
	1.2 Effects for Probabilistic Models

	2 Inference Patterns
	3 Inference Pattern: Metropolis-Hastings
	3.1 Pattern Instance: Independence Metropolis
	3.2 Pattern Instance: Single-Site Metropolis-Hastings

	4 Inference Pattern: Particle Filter
	4.1 Pattern Instance: Multinomial Particle Filter
	4.2 Pattern Instance: Resample-Move Particle Filter
	4.3 Pattern Instance: Particle Metropolis-Hastings

	5 Performance Evaluation
	6 Qualitative Comparison
	6.1 Dynamically Typed Approaches
	6.2 MonadBayes

	7 Conclusion and Future Work
	References

