
E�ects and E�ect Handlers for
Probabilistic Programming

Minh Nguyen

A thesis submitted to the University of Bristol in accordance with the requirements for award
of the degree of PhD in the Faculty of Engineering.

School of Computer Science
September 26, 2023

Word count: 30657

Abstract

Probabilistic programming languages allow programmers to construct statistical models, representing
random variables they know and those they wish to learn. Using the same language, the programmer can
then simulate data from the model, or apply an inference algorithm to learn the relationships between
the model’s variables. Although used widely, existing probabilistic languages do not fully support
modular and type-safe programming, which has speci�c impacts on end-users. When modelling, models
are either not readily composable, or are restricted to a speci�c instance of simulation or inference, thus
limiting their reusability. Most inference frameworks are then designed without a disciplined approach
to side-e�ects, which can result in monolithic implementations where the structure of the inference
algorithms is obscured and programming (customising) them is hard.

This thesis describes a novel approach for designing modular and type-safe probabilistic program-
ming languages, based on algebraic e�ects and e�ect handlers – a typed functional programming technique
for structuring e�ects. The approach is demonstrated in Haskell as a host language. Part I develops a
language for probabilistic models that are modular, �rst-class, and reusable for both simulation and
inference; it shows how these features enable new highly expressive treatment of models, such as
composition and higher-orderness. Part II then develops a framework for inference programming that
is modular and type-driven, where speci�c algorithms can be modularly derived from abstract classes of
inference algorithms; it illustrates how the approach reveals the algorithms’ high-level structure, and
makes it possible to tailor and recombine their parts into new variants.

ii

Acknowledgements

To my supervisors, Meng Wang and Roly Perera, I could not have asked for a better pair of mentors.
Meng, I would be near lost without your guidance; thank you for driving me to be the independent
researcher I am today, for pushing me beyond my comfort zone, and for never failing to believe in me
when I have often struggled to do so myself. There are few better feelings in the world than knowing
that you always have my back, and that you are there to lead me out of my own chaos. Roly, thank you
for being my role model in how I care about and conduct research – for keeping me in love with my job
when it has been hard, for being my voice of reason, and for making me strive to be proud of the work I
do. No one has had a bigger impact on how I work, and it is nothing less than an absolute joy to be able
to learn from you and do research with you.

To my master’s supervisor Nicolas Wu, the human catalyst for ideas, your love for functional
programming is contagious and I am so glad you are the one I caught it from. I am incredibly fond
of all the work and time we have spent together, and I am envious of anyone who gets to feed o� of
your excitement. There are a number of people I am indebted to for investing their time in me and
expecting nothing in return: Ohad Kammar for patiently teaching me and looking after me during my
internship at Edinburgh; Oleg Kiselyov for giving me an important leg-up on my �rst paper; and James
Geddes and Radka Jersakova at the Alan Turing Institute for always welcoming me and sparking lots of
fun discussion.

I am so blessed to be part of and grow up with the family that is the Bristol Programming Languages
research group; my next-door neighbour Eddie, my PhD sister Sam, Joe, Hanliang, Jess, Charlie, Steven,
Cristina, Alex, François, and others – thank you. The silly, wonderful, and inspiring environment that
each of you bring to my everyday work life is invaluable.

To my best friends Mihajlo and Alessio, and my best brother Quang, I love you all beyond words.

iii

Author’s Declaration

I declare that the work in this thesis was carried out in accordance with the requirements of the Uni-
versity’s Regulations and Code of Practice for Research Degree Programmes and that it has not been
submitted for any other academic award. Except where indicated by speci�c reference in the text, the
work is the candidate’s own work. Work done in collaboration with, or with the assistance of, others, is
indicated as such. Any views expressed in the thesis are those of the author.

Minh Nguyen

September 26, 2023

iv

Contents

1 Introduction 1
1.1 Bayesian modelling in practice . 1
1.2 Bayesian inference in practice . 4
1.3 Thesis outline and contributions . 5

2 Language Overview and Background 7
2.1 Probabilistic modelling . 7

2.1.1 Multimodal models . 8
2.2 Probabilistic inference . 12

2.2.1 Inference patterns and pattern instances . 13
2.3 Algebraic e�ects and e�ect handlers . 14

2.3.1 Implementing e�ectful computations . 14
2.3.2 Example: de�ning and using e�ects . 14
2.3.3 Implementing e�ect handlers . 15
2.3.4 Example: de�ning and using e�ect handlers . 17

2.4 Related work . 17

I E�ects and E�ect Handlers for Probabilistic Modelling 19

3 A Language for Multimodal Models 21
3.1 Embedding of multimodal models . 21

3.1.1 E�ect: multimodal distributions . 21
3.1.2 E�ect: model environment reading . 23
3.1.3 User-interface for writing multimodal models 23

3.2 Model environments . 24
3.3 Semantics for multimodal models . 25

3.3.1 E�ect handler: reading from model environments 25
3.3.2 E�ect handler: multimodal distributions . 25
3.3.3 Conditioning multimodal models to concrete models 26
3.3.4 E�ect handlers for executing models . 27

3.4 A case study in modular, multimodal models . 29
3.4.1 The SIR model for epidemic modelling . 29
3.4.2 Extending the SIR model with new behaviours 32
3.4.3 Extending the SIR model with additional e�ects 33

v

3.4.4 Exploring multimodality in the SIR model . 34
3.5 Qualitative evaluation and related work . 35

3.5.1 Approaches for implementing probabilistic models 35
3.5.2 Other related work . 39

4 A Formal Calculus for Multimodal Models 41
4.1 Syntax . 41

4.1.1 Type syntax . 41
4.1.2 Term syntax . 42

4.2 Kinding . 43
4.3 Typing . 44

4.3.1 Model environment types . 44
4.3.2 Value types . 44
4.3.3 Operation types . 44
4.3.4 Computation types . 45
4.3.5 Handler types . 46
4.3.6 Opening and closing row types . 46

4.4 Semantics . 48
4.4.1 Formal properties . 49

4.5 Example: linear regression . 51
4.6 Related work . 53

II E�ects and E�ect Handlers for Probabilistic Inference 55

5 A Framework for Programmable Inference 57
5.1 Inference patterns . 57

5.1.1 Inference patterns . 58
5.1.2 Pattern instances . 59

5.2 Inference pattern: Metropolis-Hastings . 59
5.2.1 Pattern instance: Independence Metropolis . 61
5.2.2 Pattern instance: Single-Site Metropolis-Hastings 61

5.3 Inference pattern: Particle Filter . 63
5.3.1 Pattern instance: Multinomial Particle Filter . 64
5.3.2 Pattern instance: Resample-Move Particle Filter 65
5.3.3 Pattern instance: Particle Metropolis-Hastings 66

5.4 Inference pattern: Guided Optimisation . 68
5.4.1 Guided models . 68
5.4.2 Inference pattern: Guided Optimisation . 69
5.4.3 Pattern instance: Black Box Variational Inference 71

5.5 Performance evaluation . 72
5.6 Qualitative comparison and related work . 74

5.6.1 Dynamically typed approaches . 74
5.6.2 Monad transformer approach: MonadBayes . 77

vi

5.6.3 Other related work . 80

6 Conclusion 83
6.1 Future work and discussion . 83

A Implementation: Elaborated de�nitions 93

B Formal calculus: Theorem proofs 94
B.1 Proof of Theorem (Determinism) . 94

B.1.1 Proof of Lemma (Unique decomposition) . 94
B.2 Proof of Theorem (Progress) . 99
B.3 Proof of Theorem (Type preservation) . 103

B.3.1 Proof of Theorem (Type preservation of{) . 103

vii

CHAPTER1
Introduction

The Bayesian approach to data analysis o�ers a powerful way to make inferences about missing data,
by using random (i.e. probabilistic) variables to represent various uncertain aspects of the problem. The
approach can be idealised into two steps:

1. Modelling: Specifying a model as a joint probability distribution over all observable and unobserv-
able variables in a problem.

2. Inference: Conditioning the model on some observed data, producing a posterior probability

distribution over the unobservable variables.

In modern practice, applying these concepts to solve real-world problems means expressing them as
programs, to be executed by machines. Probabilistic programming languages (PPLs) make this transition
from paper to program more ergonomic. The philosophy of probabilistic programming is to decouple
modelling from inference, providing users with bespoke programming language constructs for specifying
models, and a framework for automating inference over them.

The principles of modular and structured programming in the design of PPLs have a direct impact
on end-users, determining how economical it is to build and maintain complex models, and how
straightforward it is to extend inference algorithms in a reliable fashion. But existing PPLs generally
struggle in these aspects in one way or another, as introduced in the next two sections. This thesis then
proposes that both areas can be improved, substantially, using the same typed functional programming
abstraction of algebraic e�ects and e�ect handlers.

1.1 Bayesian modelling in practice

A probabilistic model captures a real-world phenomenon as a set of relationships between two kinds
of random variables: latent variables, whose values we cannot directly observe, and observable vari-
ables, whose values we can. By integrating such notions into general-purpose languages, PPLs allow
programmers to build and execute probabilistic models. For example, consider a simple linear regression
model that assumes a linear relationship between input variable G and output variable ~; this can be
represented using the standard mathematical notation shown on the left below. Using the language
presented in this thesis, the right-hand side shows how one could express the same model as a functional
program in Haskell.

1

< ∼ Normal(0, 3)
2 ∼ Normal(0, 2)
~ ∼ Normal(< ∗ G + 2, 1)

linRegr G = do
< ← normal 0 3 #<

2 ← normal 0 2 #2

~ ← normal (< ∗ G + 2) 1 #~

return ~

Both representations take a non-random input G and specify the distributions that generate the line’s
slope< and intercept 2 ; the output~ is then generated from the normal distribution using mean< ∗ G + 2
and standard deviation 1. Here the random variable ~ is observable, whereas the model parameters< and
2 that relate it to G are latent. In the program representation, each primitive distribution is associated
with a corresponding “conditionable variable” indicated by the # syntax; this is an optional argument,
and its purpose will become clear shortly.

Given a probabilistic model, the programmer or data scientist will typically want to use it in at least
two di�erent ways. Simulation involves providing �xed values for the latent parameters to generate
the resulting model outputs. Conversely, inference generally entails providing observed values for the
model outputs, in attempt to learn the latent parameters.

What then distinguishes a probabilistic language from a general-purpose one are two e�ectful
operations: Sample, namely drawing a value from a probability distribution, and Observe, which is to
incorporate an observation about external data by conditioning a distribution against it [Gordon et al.
2014]. Given these two notions, one should then be able to simulate outputs from a model, and infer the
parameters of a model.

For example, we might simulate from linRegr in our language as follows:

let GB = [0 .. 100]

env = (#< B [3]) • (#2 B [0]) • (#~ B []) • ENil

in map (_G → simulateWith env (linRegr G)) GB

First we declare a list of model inputs GB from 0 to 100. Then we de�ne a “model environment”
env which assigns values 3 and 0 to conditionable variables #< and #2. This expresses our intention to
observe parameters< and 2 – that is, to provide external data 3 as the value of< whilst conditioning
on the likelihood that< = 3, and similarly for 2 . On the other hand no values are speci�ed for #~ in
env, expressing our intent to sample the model output ~ – that is, to draw a value from its probability
distribution. We then use our library function simulateWith to simulate a single output from the model
for each data point in GB under the speci�ed environment, producing the result visualised in Fig. 1.1a.

Alternatively, we can perform inference on linRegr, for example using the Likelihood Weighting
algorithm [Meent et al. 2018], as follows:

let GB = [0 .. 100]

envs = [(#< B []) • (#2 B []) • (#~ B [3 ∗ G]) • ENil | G ← GB]

in zipWith (_G env→ lwWith 200 env (linRegr G)) GB envs

Here we de�ne a list of environments envs, which for each model input G , contains an environment that
assigns the value 3 ∗ G to #~ but nothing to #< and #2. This expresses our intention to observe ~ but
sample< and 2 . We then use library function lwWith to perform 200 iterations of Likelihood Weighting

2

(a) Simulation (b) Inference: Likelihood Weighting

Figure 1.1: Visualising Linear Regression

for each pair of model input and environment, producing a trace of weighted parameters< and 2 whose
distributions express the most likely parameter values to give rise to ~. Fig.1.1b visualises the likelihoods
of samples for<, where values around< = 3 clearly accumulate higher probabilities.

We refer to a model that can be used for both simulation and inference — where random variables
can be switched between Sample and Observe modes without altering the model itself — as a multimodal

model. While multimodal models have a clear bene�t, letting the same model be interacted with for a
variety of applications, few existing PPLs support them. Most frameworks, such as MonadBayes [Ścibior,
Kammar, and Ghahramani 2018] and Anglican [Tolpin et al. 2016], instead require programmers to
express models in terms of explicit Sample and Observe operations, which considerably limits their
reusability. If the user wishes to interact with the “same” model in a new way, they have little choice
but to reimplement it with a di�erent con�guration of Sample and Observe operations.

Indeed, the number of possible model interpretations extends far beyond the two general scenarios
of simulation and inference, potentially including any combination of Sample and Observe operations
that can be instantiated for a model’s random variables. Depending on available data and uncertainty
about the model, it is common to explore the model’s output space by providing only some of its
latent parameters (and randomly sampling the rest) [Kline and Tamer 2016], or, to alternate between
which variables are being conditioned on [Moon 1996]. Ideally, all of these possible scenarios would
be expressible with a single multimodal model de�nition, avoiding the need to de�ne and separately
maintain a di�erent version of the model for each use-case.

While some PPLs do support multimodal models, it is usually di�cult or impossible to reuse
existing models when creating new ones. Special-purpose PPLs like Stan [Carpenter et al. 2017] and
WinBUGS [Lunn et al. 2000] provide a bespoke language construct for models with its own distinctive
semantics, but as well as lacking high-level programming features beyond those essential to model
speci�cation, model de�nitions are unable to reuse other model de�nitions. PPLs like Turing [Ge et al.
2018] and Gen [Cusumano-Towner et al. 2019] instead extend general-purpose languages, implementing
multimodal models as macros that are compiled into functions; although they provide some support for
combining models, models are not �rst-class values, and so their ability to be composed or manipulated by
host language features is limited. These modularity limitations are especially signi�cant for hierarchical
modelling, where the goal is to explicitly de�ne a composite model with independently de�ned sub-
models [Gelman and Hill 2006].

3

1.2 Bayesian inference in practice

Bayesian inference is a recipe for learning from data. Consider the linear regression model with latent
variables< and 2 ; given our prior beliefs P(<,2) about their values, Bayesian inference provides a way to
calculate the posterior distribution, P(<,2 | ~;G), quantifying how our beliefs about the latent variables
should change after some observations for ~ (given G).

However, the posterior of a model rarely has an analytic solution [Ackerman et al. 2011], and so PPLs
rely on approximation methods to perform inference. Because no one method provides an optimal (or
even useful) solution to every inference problem, there are many approaches, divided broadly into Monte

Carlo methods like Likelihood Weighting above, which use random sampling to numerically approximate
the posterior, and parameter estimation techniques, which construct analytic approximations. We refer
the interested reader to Gelman, Carlin, et al. [1995] and Zhang et al. [2018] for more background.

Most inference techniques involve treating the model generatively — as something from which
samples can be drawn — and then iteratively constraining the behaviour of the model so that, over
time, those samples eventually conform to the observations. Each run of the model thus represents
only an approximant of the ideal semantic interpretation of the model (as a system which generates
samples from its posterior); moreover, a run may execute only partially, or be instrumented to produce
additional information required by the algorithm, such as parameter gradients or traces recording
stochastic choices for latent variables. So inference algorithms rely essentially on being able to execute
models under custom semantics tailored to the speci�c needs of the algorithm.

Each algorithm also comes in many variants optimised for speci�c situations, and the task of
implementing such variants falls not just to library designers. To achieve acceptable performance, model
authors often need to be versed in the intricacies of inference as well. For example, the e�ciency of
Monto Carlo methods such as particle �ltering is highly dependent on the choice of proposal distributions
encoding knowledge of the inference problem, often provided by the user [Snyder et al. 2015]. This need
for both library designers and end users to adapt existing solutions to speci�c settings has led to interest
in language and implementation techniques that make it easy to assemble new inference algorithms out
of reusable parts.

Customising and repurposing inference algorithms in this way is sometimes called programmable

inference [Mansinghka, Selsam, et al. 2014]. These techniques have been explored with some suc-
cess in systems like Venture [Mansinghka, Schaechtle, et al. 2018], Pyro [Bingham et al. 2019], and
Gen [Cusumano-Towner et al. 2019], but without using a disciplined approach to side-e�ects. Inference
algorithms, being complex imperative programs, can then result having monolithic implementations,
where the structure of the algorithms is obscured and inference programming is hard.

Perhaps counter-intuitively, the heavy reliance of inference on side-e�ects makes programmable
inference an ideal target for typed functional programming. Modern functional languages provide
powerful compositional type disciplines for managing e�ects; the key example to date is the monad

transformer approach [S. Liang et al. 1995] which was put to work in MonadBayes [Ścibior, Kammar, and
Ghahramani 2018], demonstrating the approach’s compositionality on a variety of common inference
algorithms. However, monad transformers can be rather non-trivial to work with, and for many
statisticians further complicate the task of inference programming.

4

Model Guided Model

Observe Sample

Metropolis-Hastings Particle Filter Guided Optimisation

Propose Accept Resample GradUpdate

Independence
Metropolis

Particle
Metropolis-

Hastings
Multinomial

Particle Filter
Black Box
Variational
Inference

Single-Site
Metropolis-

Hastings

Resample-
Move

Particle Filter

GuidedSample

interprets interprets

interprets

Abstract modeling code

Abstract inference pattern

Inference algorithm

Operation

extends

interprets

Multimodal Model

EnvRW MulDist

interprets

interprets

Figure 1.2: Overall architecture of the PPL developed in this thesis

1.3 Thesis outline and contributions

This thesis describes a novel approach for implementing PPLs based on algebraic e�ects and e�ect

handlers — a typed functional programming technique for structuring e�ects — to address the challenges
of typed, modular modelling and inference set out above. The approach is used to develop a language in
Haskell called ProbFX ; its implementation is visualised in Fig. 1.2 and freely available online. 1

This work is presented in two main parts, focusing on the challenges of modelling from Section 1.1,
and of inference from Section1.2. We discuss any evaluation and related work at the end of each chapter,
rather than at the end of the thesis. The following is a summary of the chapters:

Language Overview and Background

• Chapter 2 gives an overview of our language. We explain how the task of Bayesian data analysis is
carried out in PPLs, and use this to motivate our approach towards modelling and inference. We
then introduce the technique of algebraic e�ects that our approach is based on.

Part I: Modelling

• Chapter 3 describes a new representation of probabilistic models based on algebraic e�ects, and a
modular type-based mechanism called model environments for conditioning models against observed
data. Using these techniques, we develop the �rst PPL to support models that are both �rst-class
and multimodal (and type-safe). This design is visualised in the top half of Fig. 1.2.

We demonstrate how our approach enables highly modular treatment of models via a realistic case
1h�ps://github.com/min-nguyen/prob-fx-2

5

https://github.com/min-nguyen/prob-fx-2

study with real-world applications: the spread of disease during an epidemic. We then empirically
evaluate our supported modelling features against a range of modern PPLs.

This chapter is based on Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu (2022). “Modular
probabilistic models via algebraic e�ects”. In: Proceedings of the ACM on Programming Languages

6.ICFP, pp. 381–410.

• Chapter 4 presents an idealised minimal calculus for a language supporting type-safe and �rst-class
multimodal models. We formalise the key abstractions needed for multimodality as primitives in the
calculus, and integrate them with a native type-and-e�ect system based on algebraic e�ects. We then
present a small-step operational semantics for the language and some corresponding properties.

This chapter contains unpublished work.

Part II: Inference

• Chapter 5 describes a new approach for programmable inference based on algebraic e�ects, called
inference patterns, which are abstract classes of inference algorithms from which speci�c algorithms
can be modularly derived. We consider three important classes of algorithms: Metropolis-Hastings,
Particle Filtering, and Guided Optimisation, illustrating how the approach reveals the algorithms’
high-level structure, and makes it possible to tailor and recombine their parts into new variants.
This design is visualised in the bottom half of Fig. 1.2.

We show that our approach is highly competitive, performance-wise, with state-of-the-art systems
for programmable inference based on other techniques. We then evaluate our approach from a
usability and modularity perspective, contrasting with untyped systems such as Gen and Pyro, and
MonadBayes, the main existing system based on typed e�ects.

This chapter is based on Minh Nguyen, Roly Perera, Meng Wang, and Steven Ramsay (2023). “E�ect
handlers for programmable inference”. In: Proceedings of the 16th ACM SIGPLAN International

Symposium on Haskell. Haskell ’23. Seattle, WA, USA: Association for Computing Machinery,
pp. 44–58. isbn: 9798400702983.

Conclusion

• Chapter 6 summarises the main achievements in the thesis and discusses future work.

6

CHAPTER2
Language Overview and Background

This chapter gives an overview of our language, ProbFX, from the end-user perspective. We explain how
the task of Bayesian statistics is carried out using probabilistic programming, and use this to motivate
our approach to modelling in Section 2.1 and inference in Section 2.2. Then, Section 2.3 introduces the
idea of algebraic e�ects that our approach is based on, implementing the speci�c e�ect framework used
in the rest of the thesis.

2.1 Probabilistic modelling

A probabilistic model describes how a set of random variables are distributed relative to some �xed
input. If the model does not condition against any external data, the distribution it describes is the
so-called joint probability distribution, giving the probabilities of all possible values that its random
variables can assume. For example, the linear regression model from the introduction describes the
distribution P(~,<, 2;G) – the joint distribution over random variables ~,<, and 2 , given �xed input G
as a non-random parameter:

linRegr G = do
< ← normal 0 3 #<
2 ← normal 0 2 #2
~ ← normal (< ∗ G + 2) 1 #~
return ~

joint P(~,<, 2;G)

In real-world applications, we typically have known values for only a subset of these random variables,
and are interested in how the other variables are distributed with respect to those known values. Consider
providing known data ~̂ for random variable ~ in linear regression; we say that we condition the model
on the observation that ~ = ~̂. By using the well-known chain rule for two random variables:

P(.,-) = P(. | -) · P(-) (chain rule)

we can derive the resulting distribution as the product P(~ = ~̂ | <,2 ;G) · P(<,2). 1 The �rst component
is called a conditional distribution, and describes the probability that ~ = ~̂ given di�erent possible
values for< and 2 ; the second describes how those di�erent possible values for< and 2 are distributed.
Providing observed data to a probabilistic model can hence be seen as specialising its joint distribution
to some product of conditional and associated distribution that is favourable to modelling.

1An equivalent derivation is P(<,2 | ~ = ~̂;G) · P(~ = ~̂), due to the two variables in the chain rule being arbitrary.

7

2.1.1 Multimodal models

The chain rule is a powerful tool that allows us to describe a jointly occurring set of events in terms of
the variables we will provide data for, and then compute other variables of interest with respect to this;
and there are of course as many ways to decompose a joint distribution as there are combinations of
variables that can be conditioned on. Since statisticians often have a clear understanding of the variables
they wish to learn and those they wish to condition against, models are in practice often specialised to
speci�c conditional distributions (through the chain rule) and expressed as low-level algorithms that
explicitly perform sampling and conditioning, such as in Polson et al. [2013]; Ding et al. [2019].

Most PPLs, such as WebPPL [Goodman and Stuhlmüller 2014] and Anglican [Tolpin et al. 2016], are
then designed to support the direct translation of these low-level model speci�cations from paper to
program via the operations Sample and Observe. These languages are useful for creating model instances
tailored to speci�c situations, but the resulting models are not easy to experiment with. Tasks which
should be straightforward, such as exploring random variable behaviours by isolating which ones are
sampled from [Idreos et al. 2015] or selectively optimising model parameters [Yekutieli 2012], require
alternative specialisations to be created by hand.

With multimodal PPLs, the programmer speci�es a single model which can be used to generate
multiple specialisations, representing speci�c conditional distributions. Such languages require a
mechanism for specifying observed data to random variables, determining whether they are to be
sampled or observed. For example, Turing [Ge et al. 2018] lets users choose whether to provide observed
values as arguments when invoking a model, with omitting an argument defaulting to sampling; in
Pyro [Bingham et al. 2019], users specify mappings between random variables and observed data via
Python context managers that later constrain the values of runtime sampling operations. However, these
solutions are dynamically typed with no guarantee that the named variables exist or are provided values
of the correct type.

2.1.1.1 Multimodal models via model environments

ProbFX supports multimodal models through a novel notion of model environment, which we explain in
the context of a Hidden Markov Model (HMM) [Rabiner and Juang 1986]. The idea of a HMM is that we
have a series of latent states G8 which are related in some way to observations ~8 .

G1 G2 G3

~1 ~2 ~3 Observations

Latent States... ...

The HMM is then de�ned by two sub-models: a transition model (→) that determines how latent states
G8 are transitioned between, and an observation model (↑) that determines how G8 is projected to an
observation ~8 . The objective is to learn about G8 given ~8 .

A simple HMM expressed in typical statistical pseudocode is shown in Fig. 2.1a; we describe its
corresponding implemention in ProbFX in Fig. 2.1b:

8

hmm(=, G0)
ΔG ∼ Uniform(0, 1)
Δ~ ∼ Uniform(0, 1)
for 8 = 1...=:
XG8 ∼ Bernoulli(ΔG)
G8 = G8−1 + XG8
~8 ∼ Binomial(G8 , Δ~)

return G=

hmm :: (Conditionables env ["~8 "] Int
, Conditionables env ["ΔG " , "Δ~"] Double)
⇒ Int → Int→ MulModel env es Int

hmm = G0 = do
ΔG ← uniform 0 1 #ΔG
Δ~ ← uniform 0 1 #Δ~
let loop 8 G8−1 | 8 < = = do

XG8 ← bernoulli’ ΔG
let G8 = G8−1 + XG8
~8 ← binomial G8 Δ~ #~8
loop (8 + 1) G8

| otherwise = return G8−1
loop 0 G0

(a) Statistical pseudocode (b) ProbFX implementation

Figure 2.1: Hidden Markov Model

Model parameters

Transition model

Observation model

The type of hmm says it is a function that takes two Ints as input and returns a MulModel env es Int,
where env is the model environment, es is the e�ects which the model can invoke (as in Section 2.3),
and Int is the type of values the model generates. The constraint Conditionables states that #~8 :: Int, #ΔG

:: Double, and #Δ~ :: Double, are conditionable variables in the model environment which may be provided
observed values.

The function hmm takes the HMM length = and initial latent state G0 as inputs, and speci�es the
transition and observation parameters ΔG and Δ~ to be distributed uniformly. It then iterates over the =
nodes, applying the transition and observation models at each step. The transition model computes
latent state G8 from state G8−1 by adding a value XG8 generated from a Bernoulli distribution bernoulli′ ΔG .
The observation model generates observation ~8 from G8 via the distribution binomial G8 Δ~ . 2 The �nal
latent state is returned at the end.

The hash syntax, for example in #~8 , constructs the unique inhabitant of the type-level string "~8 ", and
is how the programmer associates variables in the Conditionables env constraint with speci�c primitive
distributions. They do this to indicate that they may later be interested in providing observed values for
these variables to condition on. When they execute a model, they must provide a concrete environment
of type env, and the presence or absence of observed values in that environment will determine whether
the distribution tagged with #~8 is to be interpreted as Observe or Sample. The distribution bernoulli ′ ΔG

has no conditionable variable, indicating that it is not possible to condition on XG8 ; these primed variants
of distributions are always interpreted as Sample, and are a convenience for when the programmer
deems it unlikely for certain variables to ever be given observations.

A model can then be interpreted as any of its conditioned forms by specifying an appropriate model
environment. In our example, the HMM in its unspecialised form represents the joint distribution over
its latent states G8 , observations ~8 , and parameters ΔG ,Δ~ (given �xed input G0 as the �rst latent state):

P(G1...G=, ~1...~=, ΔG , Δ~ ; G0)

We can then simulate the HMM (with length = = 10 and initial state G0 = 0) by providing values for
2Binding to the local name ~8 is technically redundant here since ~8 is never used, but emphasises the connection to the ∼

notation used by statisticians.

9

#ΔG and #Δ~ in an environment env, and calling the library function simulateWith:

let G0 = 0; = = 10;
env = (#ΔG B [0.5]) • (#Δ~ B [0.8]) • (#~8 B []) • nil

in simulateWith env (hmm = G0)

This indicates that we want to Observe 0.5 and 0.8 for ΔG and Δ~ , and Sample for each occurrence of ~8
because we provided no values for #~8 . There are multiple occurrences of ~8 at runtime, one for each
8 ∈ {1...=}, thanks to the iterative structure of the HMM. By the chain rule, the probability density
expressed by instantiating the model with this environment is:

P(ΔG = 0.5, Δ~ = 0.8 | G1...G10, ~1...~10; G0 = 0) · P(G1...G10, ~1...~10)

In the case of inference, on the other hand, we provide an observation for each ~8 and try to learn
ΔG and ΔG . This is why, as the reader may already have noticed, a model environment provides a list of
values for each conditionable variable, allowing for the situation where the conditionable variable has
multiple dynamic occurrences. In this case we provide 10 observations, one for each 8 ∈ {1...=}, before
calling the library function lwWith for Likelihood Weighting inference:

let G0 = 0; = = 10;
env = (#ΔG B []) • (#Δ~ B []) • (#~8 B [0, 1, 1, 3, 4, 5, 5, 5, 6, 5]) • nil

in lwWith 100 env (hmm = G0)

At runtime, the values associated with #~8 in the model environment are used to condition against the
occurrences of #~8 that arise during execution, in the order in which they arise. By the chain rule, the
probability density expressed is:

P(~1 = 0 ... ~10 = 5 | G1...G10, ΔG , Δ~ ; G0 = 0) · P(G1...G10, ΔG , Δ~)

Although the type system ensures that model environments map conditionable variables to values
of an appropriate type, it does not constrain the number of values that are provided. Should observed
values run out for a particular variable, any remaining runtime occurrences of the variable will default
to Sample; conversely, any surplus of values is ignored. Alternative designs are discussed in Section 6.1.

2.1.1.2 First-class models

Fig. 2.1a used a single procedure, written in statistical pseudocode, to express a Hidden Markov Model.
Such notations are understood by most mathematicians and are widely used in statistical journals.
Even when the model is complex, a monolithic style of presentation prevails, where models are de�ned
from scratch each time rather than built out of reusable components. The design of PPLs such as
Stan [Carpenter et al. 2017], PyMC3 [Salvatier et al. 2016] and Bugs [Lunn et al. 2000] re�ect these
non-modular conventions.

Programmers, on the other hand, recognise the importance of modularity to maintainability and
reusability: they expect to be able to decompose models into meaningful parts. Fig. 2.2a shows how the
programmer may imagine the same HMM as a composition of parts; because ProbFX embeds models into
a functional language, it can then support this treatment of models as �rst-class functions in Fig. 2.2b.

In Fig. 2.2b we de�ne the transition and observation models separately as transModel and obsModel.
These are composed by hmmNode to de�ne the behaviour of a single node, which is in turn used by hmm

10

transModel(ΔG , G8−1)
XG8 ∼ Bernoulli(ΔG)
return G8−1 + XG8

transModel :: Double→ Int→ MulModel env es Int
transModel ΔG G8−1 = do
XG8 ← bernoulli′ ΔG
return G8−1 + XG8

obsModel(Δ~, G8)
~8 ∼ Binomial(G8 , Δ~)
return ~8

obsModel :: (Conditionables env ["~8 "] Int)
⇒ Double→ Int→ MulModel env es Int

obsModel Δ~ G8 = do
~8 ← binomial G8 Δ~ #~8
return ~8

hmmNode(ΔG ,Δ~, G8−1)
G8 ∼ transModel(ΔG , G8−1)
obsModel(Δ~, G8)
return G8

hmmNode :: (Conditionables env ["~8 "] Int)
⇒ Double→ Double→ Int→ MulModel env es Int

hmmNode ΔG Δ~ G8−1 = do
G8 ← transModel ΔG G8−1
obsModel Δ~ G8
return G8

hmm(=, G0)
ΔG ∼ Uniform(0, 1)
Δ~ ∼ Uniform(0, 1)
for 8 = 1...=;
G8 ∼ hmmNode(ΔG ,Δ~, G8−1)

return G=

hmm :: (Conditionables env ["~8 "] Int
, Conditionables env ["ΔG " , "Δ~"] Double)
⇒ Int→ Int→ MulModel env es Int

hmm = G0 = do
ΔG ← uniform 0 1 #ΔG
Δ~ ← uniform 0 1 #Δ~
foldl (>=>) return (replicate = (hmmNode ΔG Δ~)) G0

(a) Statistical pseudocode (b) ProbFX implementation

Figure 2.2: A modular Hidden Markov Model

to create a chain of nodes of length =, using replicate and a fold of Kleisli composition (>=>) to propagate
each node’s output to the next one in the chain.

(>=>) :: (a → MulModel env es b)→ (b→ MulModel env es c)→ (a→ MulModel env es c)

The conditionable variables of hmm are now inherited from its sub-models: transModel has none and so
lacks a Conditionables constraint, whereas obsModel declares #~8 as its only conditionable variable.

As well as improving reusability, compositionality also allows programmers to organise models
around the structure of the problem domain. For example, the functions in Fig. 2.2b correspond in a
straightforward way to the abstract components of a HMM: transModel makes it obvious that latent
state G8 depends only on the previous state G8−1 (and ΔG), and obsModel that observation ~8 depends only
on the state G8 that produced it (and Δ~).

The implementation of multimodal models in ProbFX is developed in Part I, alongside a real-world
case study demonstrating the approach’s support for modular and reusable modelling.

11

2.2 Probabilistic inference

The start of Section 2.1 considered linear regression, linRegr, as a multimodal model of type MulModel,
abstract in whether its random variables were sampled or observed. By providing observed data ~ = ~̂,
we formulated an inference problem over that multimodal model, that is, a concrete probabilistic model
that samples and observes; this would be akin to linRegr′ of type Model below, also written in ProbFX:

linRegr ′ :: Double→ Double→ Model Double
linRegr ′ G ~̂ = do
< ← call (Sample (Normal 0 3))
2 ← call (Sample (Normal 0 2))
y ← call (Observe (Normal (< ∗ G + 2) 1) ~̂)
return y

prior P(<,2)
likelihood P(~ = ~̂ | <,2;G)

The Sample operations represent our prior beliefs about latent variables< and 2 before accounting for
any data. The operation Observe represents the likelihood of observable variable ~ indeed being ~̂, given
~ is normally distributed with mean< ∗ G + 2 and standard deviation 1.

Bayesian inference is then to try and solve this inference problem by using the Bayesian update rule,
which revises the prior beliefs on the basis of observations to obtain a posterior distribution:

P(- | .)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(. | -) ·

prior︷︸︸︷
P(-)

P(.)︸︷︷︸
evidence

(Bayesian update rule)

For linRegr′, this derives an equation for the posterior P(<,2 | ~ = ~̂;G). Unfortunately, extracting an
exact form for the posterior is rarely simple. Although the Sample and Observe operations in linRegr′

determine the prior and likelihood respectively, computing the evidence that forms the denominator,
in this case P(~ = ~̂;G), often involves complex, high-dimensional integration [Ackerman et al. 2011],
and probabilistic languages in practice hence use approximation algorithms such as Monte Carlo
methods [Andrieu et al. 2003] or variational inference [Fox and Roberts 2012]. The general pattern
is to interpret the model as a generative process, from which samples can be drawn, then iteratively
constrain the model so that eventually the samples conform to the observations.

When using the model generatively in this way, inference algorithms need to provide their own
semantics for sampling and observing. For example, Metropolis-Hastings algorithms [Beichl and Sullivan
2000] are Monte Carlo methods that execute the target model under speci�c proposals, that �x the
stochastic choices made by the model on a given run. By selectively accepting or rejecting proposals,
the algorithm controls how samples are generated, and guarantees that as more samples are produced,
the distribution of values eventually converges on the desired posterior. Pseudocode for a generic
Metropolis-Hastings iteration is shown here for linear regression:

do (<′, 2 ′) ← propose (<, 2)
d ′ ← exec (linRegr G ~̂) (<′, 2 ′)
b ← accept d ′ d
return (if b then (<′, 2 ′) else (<, 2))

Figure 2.3: Pseudocode: generic Metropolis-Hastings step on a linear regression model

12

First new values <′ and 2 ′ are proposed for the slope and intercept, given the values from the
previous iteration,< and 2. The function exec then executes the linear regression model with a custom
semantics for sampling and observing, ensuring that<′ and 2 ′ are used for the corresponding Sample

operations, and conditioning with the observation ~̂ for input G . The resulting likelihood d ′ is compared
with d from the previous iteration to determine whether to accept the new proposal or keep the current
one. Running this procedure for many iterations will generate a sequence of samples < and 2 that
approximate the posterior distribution P(<,2 |~ = ~̂;G).

2.2.1 Inference patterns and pattern instances

We �nd it useful to think of Metropolis-Hastings, as sketched in Fig. 2.3, as an inference pattern rather
than a speci�c inference algorithm: there are many algorithmic variants with this particular structure,
di�ering only in how they implement propose, exec, and accept. Indeed, most algorithms come in similar
families of variants, with abstract operations and skeletal behaviour shared by the variants, as well as
their own bespoke execution semantics for models. Particle �lters 3 [Djuric et al. 2003], for example,
rely on being able to partially execute collections of models called particles from observation point to
observation point; at each observation, particles are randomly �ltered, or resampled, to retain only those
likely to have come from the target posterior. Di�erent instances of the Particle Filter pattern vary
in how the resampling operation works, and how particles are executed between observation points;
di�erent choices yield di�erent well-known algorithms.

Achieving the kind of modular design suggested by this perspective, however, is not straightforward.
The goal of “programmable inference” remains a challenging one. Interesting examples to date include
Venture [Mansinghka, Schaechtle, et al. 2018], which uses metaprogramming techniques to enable
inference programming in a Lisp-based language; MonadBayes [Ścibior, Kammar, and Ghahramani
2018], which uses monad transformers to implement a modular library for inference programming in
Haskell; and Gen [Cusumano-Towner et al. 2019], a framework for inference programming in Julia
which relies on a �xed black box interface for executing models generatively.

ProbFX o�ers programmable inference via the approach of inference patterns as described above,
representing broad families of inference algorithms. The framework we present to the user follows
the diagram in Fig. 1.2. The Model, provided by the user, expresses an inference problem in terms of
abstract Sample and Observe operations. The inference pattern, provided by the library designer, de�nes
a skeletal procedure for iteratively executing a Model under a speci�c semantics, similar to Fig. 2.3. These
procedures in turn have their own abstract operations, like Propose and Accept. By assigning these
operations a semantics, the user can then derive a concrete algorithm capable of generating samples
from the model’s posterior; we call these pattern instances.

The framework of inference patterns in ProbFX is developed in Part II, showing how the approach
reveals the high-level structure of well-known algorithms, and makes it possible to derive new algorithm
variants out of existing ones.

3also called Sequential Monte Carlo methods

13

2.3 Algebraic e�ects and e�ect handlers

Algebraic e�ects and e�ect handlers is a typed functional programming technique for managing the
side-e�ects of a computation. In this setting, e�ects are modelled as coroutine-like interactions between:
(i) side-e�ecting expressions that request (abstract) operations to be performed, and (ii) interpreters,
called e�ect handlers, that assign meaning to those operations [Pretnar 2015]. An operation may also
provide a continuation, allowing the handler to return control to the requesting expression. Algebraic
e�ects thus lets us orthogonally specify the syntax and semantics of operations in programs, which will
become fundamental in our approach to modular probabilistic programming.

The speci�c e�ect framework used in this thesis is based on Kiselyov and Ishii [2015]’s extensible
freer monad: an embedding of a type-and-e�ect system into Haskell, exploiting Haskell’s rich support
for embedded languages. We explain this next, and discuss alternative representations in related work.

2.3.1 Implementing e�ectful computations

The extensible freer monad [Kiselyov and Ishii 2015] represents an e�ectful computation using the
recursive datatype Comp es a at the top of Fig. 2.4. A term of type Comp es a is a computation that
produces a value of type a, whilst possibly performing any of the computational e�ects speci�ed by the
e�ect signature es, a type-level list of type constructors. Leaf nodes Val x contain pure values x of type a.
Operation nodes Op op k contain operations op of the abstract datatype E�ectSum es b, representing the
invocation of an operation of type e b for some e�ect type constructor e in es, where b is the (existentially
quanti�ed) return type of the operation; the argument k is a continuation of type b→ Comp es a that
takes the result of the operation and constructs the remainder of the computation. Values of type
Comp es a thus represent uninterpreted computation trees comprised of pure values and operation calls
chosen from es.

The type Comp es is a monad, allowing e�ectful code to piggyback on Haskell’s do notation for
sequential chaining of monadic computations (used by the linRegr′ model in Section 2.2). The bind
operator (>>=) can be viewed as taking a computation tree of type Comp es a and extending it at its leaves
with a computation generated by f :: a→ Comp es b. In the Val x case, a new computation f x is returned.
Otherwise for Op op k, the rest of the computation k is composed with f using Kleisli composition (>=>)

for composing monadic functions.
E�ectSum es is key to the extensibility of the approach, representing an “open” (extensible) sum of

e�ect type constructors. A concrete value of type E�ectSum es a is an operation of type e a for exactly one
e�ect type constructor e contained in es. Its implementation is kept hidden; instead, the type class e ∈ es

is used to assert that e is a member of es, and provides methods for safely injecting (inj) and projecting
(prj) an operation of type e a into and out of E�ectSum es a. Then, the helper function call makes it easy
to call an operation (also used in linRegr′, Section 2.2). It injects the supplied operation of type e a into
E�ectSum es a, and then lifts the result to Comp es a supplied with the trivial leaf continuation Val.

2.3.2 Example: de�ning and using e�ects

Using this embedding, e�ects are represented by type constructors of kind Type→ Type, whose type
argument represents a return value; their operations are then data constructors which specify this
type argument. For instance, the Reader s e�ect below is for reading a state of type s, and its single

14

Computations

data Comp (es :: [Type→ Type]) (a :: Type) where
Val :: a → Comp es a
Op :: E�ectSum es b → (b→ Comp es a)→ Comp es a

instance Monad (Comp es) where
return :: a → Comp es a
return x = Val x

(>>=) :: Comp es a→ (a→ Comp es b)→ Comp es b
Val x >>= f = f x
Op op k >>= f = Op op (k >=> f) equivalently Op op (_x→ k x >>= f)

call :: e ∈ es⇒ e a→ Comp es a
call op = Op (inj op) Val

Operations

data E�ectSum (es :: [Type→ Type]) (a :: Type) where ...

class e ∈ es where
inj :: e a → E�ectSum es a
prj :: E�ectSum es a → Maybe (e a)

Figure 2.4: The Comp type for e�ectful computations, based on the extensible freer monad

operation Read of type Reader s s suggests that the operation returns the current state. The Printer e�ect
also has one operation, Print, which takes a string argument and returns the unit value. The program
readAndPrintTwice then uses the infrastructure from Fig.2.4 to express a computation with these e�ects; it
constrains the computation’s e�ect signature with Reader Int ∈ es and Printer ∈ es, allowing the operation
Read to be called for retrieving the integer state, and Print to be called with the string form of that integer.

data Reader s a where
Read :: Reader s s

data Printer a where
Print :: String → Printer ()

readAndPrintTwice :: (Reader Int ∈ es, Printer ∈ es)⇒ Comp es ()

readAndPrintTwice = do
i ← call Read

call (Print (show i))

j ← call Read

call (Print (show j))

2.3.3 Implementing e�ect handlers

Fig.2.4 provided the machinery required to construct e�ectful computations; Fig.2.5 shows the machinery
required to execute them. Executing an e�ectful computation means providing a “semantics” for each of
its e�ects, in the form of an interpreter called an e�ect handler. A handler for e�ect type e has the type
Handler e es a b; it assigns partial meaning to a computation tree by interpreting all operations of type e,
discharging e from the front of the e�ect signature, and transforming the result type from a to b. E�ect
handlers are thus modular building blocks which compose to constitute full interpretations of programs.

The helpers handle and handleWith make it easy to implement handlers; handleWith is used for
handlers that also thread a state of type s, whereas handle sets s to be the trivial unit type to be ignored.

15

type Handler e es a b = Comp (e : es) a → Comp es b

handle :: (a → Comp es b)
→ (forall c . e c → (c→ Comp es b)→ Comp es b)
→ Handler e es a b

handle hval hop = handleWith () hval′ hop′

where
hval′ () x = hval x
hop′ () op k = hop op (k ())

handleWith :: s
→ (s→ a→ Comp es b)
→ (forall c . s → e c→ (s→ c→ Comp es b)→ Comp es b)
→ Handler e es a b

handleWith s hval _ (Val x) = hval s x
handleWith s hval hop (Op op k) = case decomp op of

Le� ope → hop s ope k′

Right opes→ Op opes (k′ s)
where
k′ s′ = (handleWith s′ hval hop) ◦ k

decomp :: E�ectSum (e : es) a → Either (e a) (E�ectSum es a)

Figure 2.5: The Handler type for e�ect handlers, and helpers for implementing handlers

Both take two higher-order arguments: hval, which says how to interpret pure values, and hop, which
says how to interpret operations of e�ect type e. In the Val x case, where the computation contains no
operations, we simply apply hval to the return value (and state), yielding a computation from which e

has been discharged. In the Op op k case, where op has type E�ectSum (e : es) a, the auxiliary function
decomp determines whether op belongs to the leftmost e�ect e, and can thus can be handled by hop,
or whether it belongs to an e�ect in es, in which case we can simply reconstruct the operation at the
narrower type. In either case we recurse (by extending the continuation) to ensure that the rest of the
computation is handled similarly. 4

Lastly, there are two special cases of handling below. The �rst is when the e�ect signature is
empty; in this case, there are no operations left in the computation tree, and so runPure runs the pure
computation to extract its return value. The second case, when the �nal e�ect is a monad m, is useful for
executing probabilistic computations; here, runImpure produces an impure computation in the monadic
context m, by simply extracting and sequencing the m operations.

runPure :: Comp [] a→ a

runPure (Val x) = x

runPure (Op op k) = error " impossible "

runImpure :: Monad m⇒ Comp [m] a→ m a

runImpure (Val x) = return x

runImpure (Op op k) = fromJust (prj op) >>= (runImpure ◦ k)

4A handler that recurses like this is called a deep handler, and can be considered the default mechanism of e�ect handlers.
The alternative is a shallow handler [Kammar et al. 2013; Hillerström and Lindley 2018].

16

2.3.4 Example: de�ning and using e�ect handlers

A key appeal of e�ect handlers is the ease at which new semantics can be de�ned for the same e�ect,
and the semantics for each e�ect then composed to form new interpretations of entire programs. Some
examples are given below for the e�ects Reader s and Printer from earlier.

For the Reader s e�ect, immutRead uses the handle helper to de�ne an interpretation where the
supplied state s0 that is read from is immutable; its component hop interprets Read by returning s0, and
Val is used to simply return the computation’s result upon termination. The handler incrRead instead
uses handleWith to increment the integer state at each read request, and const Val (where const x y = x) to
discard the �nal state and return only the computation’s result.

immutRead :: s → Handler (Reader s) es a a

immutRead s0 = handle Val hop

where
hop Read k = k s0

incrRead :: Int → Handler (Reader Int) es a a

incrRead s0 = handleWith s0 (const Val) hop

where
hop s Read k = k (s + 1) s

For the Printer e�ect, purePrint provides a pure interpretation that appends the printed strings,
returning the �nal string upon termination; impurePrint instead prints each string to the terminal by
calling the IO.print function from Haskell’s prelude, inserting this as an operation in the computation
tree as long as IO is present in the e�ect signature.

purePrint :: Handler Printer es a (a , String)

purePrint = handleWith "" (_s x→ Val (x, s)) hop

where
hop str (Print str’) k = k (str ++ str’) ()

impurePrint :: IO ∈ es⇒ Handler Printer es a a

impurePrint = handle Val hop

where
hop (Print str’) k = do call (IO. print str)

k ()

Composing these handlers to assemble full interpretations of programs can then be done in a variety
of ways, taking the program readAndPrintTwice from earlier as an example:

ghci> (runPure ◦ purePrint ◦ immutRead 0) readAndPrintTwice :: ((), String)

((), "00")

ghci> (runPure ◦ purePrint ◦ incrRead 0) readAndPrintTwice :: ((), String)

((), "01")

ghci> (runImpure ◦ impurePrint ◦ immutRead 0) readAndPrintTwice :: IO ()

0

0

ghci> (runImpure ◦ impurePrint ◦ incrRead 0) readAndPrintTwice :: IO ()

0

1

2.4 Related work

The theory of algebraic e�ects and operations was pioneered by Plotkin and Power [2003] and e�ect
handlers later added by Plotkin and Pretnar [2009], giving rise to a general framework for structuring
e�ects in programs, and many speci�c implementations. We provide a brief overview of some variants.

17

Libraries for algebraic e�ects As described originally by Plotkin and Pretnar [2013], the signature of
an e�ect’s operations forms a free algebra, which in turn gives rise to a free monad; this provides a natural
way for representing computation trees and the handlers that give semantics to those trees [Swierstra
2008]. Thus, many library implementations of e�ects are historically based on free monads, using
languages with built-in monadic support. For example in Haskell, Kammar et al. [2013] develop an
e�cient library in Template Haskell that optimises the free monad to a continuation monad; Wu and
Schrijvers [2015] parameterise the free monad by a coproduct of e�ects, and embed e�ect handlers as
type classes; Kiselyov, Sabry, et al. [2013] combine the free monad with a type-class-only approach
for extensible e�ect signatures, this later leading to the extensible freer monad [Kiselyov and Ishii
2015] that our implementation of Comp es a is based on. Other examples of host languages used include
Idris [Brady 2021], whose dependent type system enables e�ects to be reasoned about in accordance to
some user-provided speci�cation [Brady 2013], and Purescript [Freeman 2017], which facilitates a row
polymorphic approach to embedding e�ect signatures.

Languages for algebraic e�ects Programming languages designed with native support for algebraic
e�ects need not use monads, instead treating e�ects and handlers as built-in primitives. E� [Bauer
and Pretnar 2015], which is an ML-style language, was the �rst full-�edged language built around
algebraic e�ects, implementing its own e�ect subtyping system and providing �rst-class support for
e�ect handlers and algebraic e�ects. Rather than featuring an explicit free monad construction, E�
distinguishes between the syntax of e�ectful computations and of pure values, and associates operations
with a delimited continuation that lets them be handled. Frank [Lindley, McBride, et al. 2017], a strict
functional language with a type-and-e�ect system, replaces functions entirely with handlers which may
interpret e�ects by pattern matching on computation trees. Koka [Leijen 2017] and Links [Hillerström
and Lindley 2016] implement an e�ect system based on row polymorphism, allowing e�ects to be
extensibly modelled and managed at the type-level. To then implement handlers, which requires
capturing the continuation of operations, Koka compiles programs into continuation-passing-style, and
Links uses its support for manipulating �rst-class continuations.

Generalising the implementation in this thesis While the language developed in this thesis is
implemented in Haskell, the key ideas of the overall approach can be captured in other host languages.
In particular, any typed functional language that supports polymorphic rows, like PureScript [Freeman
2017] and OCaml [Leroy et al. 2020], or with a type system powerful enough to express something
similar, like Haskell, should be capable of meeting the main requirements: (i) polymorphic sums for
expressing e�ect signatures, and (ii) polymorphic records for expressing model environments. This was
demonstrated using Idris2 [Brady 2021] as a host language instead. 5 Similarly, the choice of the extensible
freer monad [Kiselyov and Ishii 2015] as a speci�c representation of algebraic e�ects is inessential, and
any other embedding of algebraic e�ects should work. This was shown using fused e�ects [Wu and
Schrijvers 2015] as an alternative e�ects framework in Haskell. 6

5h�ps://github.com/idris-bayes/prob-fx
6h�ps://github.com/Functional-Labelling-Lab/fused-probfx

18

https://github.com/idris-bayes/prob-fx
https://github.com/Functional-Labelling-Lab/fused-probfx

Part I

E�ects and E�ect Handlers for
Probabilistic Modelling

19

CHAPTER3
A Language for Multimodal Models

This chapter describes our approach for implementing the multimodal models of Section 2.1. Our
insight is that algebraic e�ects, in combination with ideas from row polymorphism [Leijen 2005],
o�ers a modular and type-safe solution for this. First, we can represent multimodal models as e�ectful
computations that contain primitive distributions as abstract operations; this will let us defer interpreting
each distribution as either Sample or Observe until we know which random variables we want to condition
on. Second, we can represent a collection of random variables as a (polymorphic) record, associating
the names of random variables with their observed values to be conditioned on; this is what we earlier
called (Section 2.1) a model environment.

Our embedding of multimodal models is developed in Section3.1. We then implement model environ-
ments in Section 3.2, and e�ect handlers for interpreting models under these environments in Section 3.3.

3.1 Embedding of multimodal models

We de�ne a multimodal model (top, Fig. 3.1) to be an e�ectful computation of type Comp es a where
es includes at least two speci�c e�ects: MulDist and EnvRW env. The MulDist e�ect allows the model
to make use of primitive distributions, such as the normal and uniform distribution, in a multimodal
fashion. The EnvRW env e�ect allows the model to read and update the values of conditionable variables
in a model environment of type env. While these two e�ects su�ce for model speci�cation, others may
be useful for model execution, and using the ∈ constraint lets the model remain polymorphic in any
such additional e�ects.

3.1.1 E�ect: multimodal distributions

The core computational e�ect of a multimodal model is the MulDist e�ect type (middle, Fig.3.1), allowing
models to be formulated in terms of primitive probability distributions that are multimodal. Each
operation of MulDist would, in concept, correspond to a di�erent primitive distribution.

For the purposes of extensibility, we instead de�ne it with a single operation, MulDist, which can be
used to represent many possible distributions. Its �rst argument of type d is constrained by the type class
Dist d a, specifying that d is a primitive distribution that generates values of type a, with the functional
dependency d→ a indicating that d fully determines a. The second argument of type Maybe a is key to

21

Multimodal models

newtype MulModel env es a
= MulModel { runMulModel :: (MulDist ∈ es, EnvRW env ∈ es)⇒ Comp es a }

instance Monad (MulModel env es) where
return x = MulModel (return x)
MulModel mx >>= f = MulModel (mx >>= (_x→ runMulModel (f x)))

E�ect: multimodal distributions

data MulDist a where
MulDist :: Dist d a ⇒ d→ Maybe a→ MulDist a

class Dist d a | d → a where
draw :: d → Double→ a
logProb :: d → a→ LogP

type LogP = Double

E�ect: model environment reading/writing

data EnvRW env a where
EnvRead :: Conditionable env x a ⇒ CondVar x→ EnvRW env (Maybe a)
EnvWrite :: Conditionable env x a ⇒ CondVar x→ a→ EnvRW env ()

Figure 3.1: Multimodal models

supporting multimodality: it allows every primitive distribution to, at runtime, be interpretable as either
Sample or Observe, depending on the availability of an observed value to condition on. This detail is
hidden from the user, but is used internally to determine how operation calls are to be interpreted, as
we discuss later (Section 3.3.2).

Instances of Dist d a must implement two functions: (i) draw, which takes a distribution d and random
point r chosen from the unit interval [0, 1], and draws a sample by inverting the cumulative distribution
function of d at r; and (ii) logProb, which computes the log probability of d generating a particular value.
(The synonym LogP is helpful for distinguishing log probabilities from other values of type Double. Log
probabilities are used rather than probabilities as addition is generally more e�cient to compute than
multiplication, and the product of probabilities can be recovered by exponentiating the sum of their log
probabilities.)

For example, below implements the Bernoulli distribution over Booleans, with probability ? of
generating True, and 1 - ? for False:

data Bernoulli = Bernoulli { ? :: Double }

instance Dist Bernoulli Bool where
draw (Bernoulli ?) r = r ≤ ?
logProb (Bernoulli ?) b = if b then log ? else log (1 − ?)

Figure 3.2: Bernoulli distribution + type class instance for Dist

This states that drawing True corresponds to drawing a random value r ≤ ? uniformly from [0, 1], with
the log probabilities log ? and log (1 - ?) of drawing True and False respectively.

22

3.1.2 E�ect: model environment reading

In order to use model environments to condition on variables, we require models to support the e�ect
EnvRW env (bottom, Fig. 3.1) for reading and updating observed values from environment env.

The types Conditionable env x a and CondVar x in the operations’ type signatures are de�ned later
(during model environments, Section 3.2), but we give an intuition for what they mean. The constraint
Conditionable env x a says that env contains a conditionable variable x whose observed values are of type
a. The datatype CondVar x lets the user represent x using the special # syntax, such as #< in Section 1.1.

The �rst operation EnvRead takes a conditionable variable that can be looked up in the model
environment, and returns a Maybe-type value, indicating the presence or absence of an observed value
to condition on. The second operation, EnvWrite, is used to write to an output environment that is
separate from what EnvRead reads from; this output environment instead records all the sampled and
observed values (of conditionable variables) that arise during model execution.

3.1.3 User-interface for writing multimodal models

The user is not expected to invoke the e�ects MulDist and EnvRW directly. Rather, for each primitive
distribution, we provide a smart constructor [Swierstra 2008] that manages the requests to read from
conditionable variables before calling the distribution. For example, consider the Bernoulli distribution
from earlier:

data Bernoulli = Bernoulli { ? :: Double }

bernoulli :: Conditionable env x Bool ⇒ Double→ CondVar x→ MulModel env es Bool
bernoulli ? G = MulModel (do maybev← call (EnvRead G)

v ← call (MulDist (Bernoulli ?) maybev)
call (EnvWrite G v)
return v)

bernoulli ′ :: Double→ MulModel env es Bool
bernoulli ′ ? = MulModel (call (MulDist (Bernoulli ?) Nothing))

Figure 3.3: Bernoulli distribution + smart constructors

The smart constructor bernoulli takes, in addition to the usual distribution parameters, a conditionable
variable G :: CondVar x. The role of a smart constructor is to call an EnvRead operation for G , retrieving its
possible observed value of type Maybe a from the input model environment, which is then used to call
the MulDist operation; EnvWrite then writes the distribution’s result to an output model environment.

coinFlip = do
p ← uniform 0 1 #p
y ← bernoulli p #y
return y

coinFlip = do
maybep ← call (EnvRead #p)
p ← call (MulDist (Uniform 0 1) maybep)
call (EnvWrite #p p)

maybey ← call (EnvRead #y)
y ← call (MulDist (Bernoulli p) maybey)
call (EnvWrite #y y)
return y

(a) User code, with smart constructors (b) Without smart constructors

Figure 3.4: Desugaring of a multimodal model

23

Model environments

data Env (env :: [Assign Symbol Type]) where
ENil :: Env []
ECons :: [a] → Env env→ Env ((x B a) : env)

data Assign x a = x B a

(•) :: Assign (CondVar x) [a] → Env env→ Env ((x B a) : env)
(G := as) • env = ECons as env

Conditionable variables

data CondVar (x :: Symbol) where
CondVar :: KnownSymbol x⇒ CondVar x

instance (KnownSymbol x, x ∼ x′)⇒ IsLabel x (CondVar x′) where ...

Constraining model environments

class Conditionable env x a
get :: CondVar x → Env env→ [a]
set :: CondVar x → [a]→ Env env→ Env env

type family Conditionables env xs a :: Constraint where
Conditionables env (x : xs) a = (Conditionable env x a, Conditionables env xs a)
Conditionables env [] v = ()

Figure 3.5: Model environments and conditionable variables

A primed variant (bernoulli′) of each smart constructor is also provided that uses Nothing as the
observed value, for the common case when a distribution does not need to be conditioned on.

To illustrate how smart constructors work, consider the simple model in Fig. 3.4 which generates
a bias p from a uniform distribution and uses it to parameterise a Bernoulli distribution, determining
whether the outcome of a coin �ip y is more likely to be heads (True) or tails (False). Fig. 3.4a shows how
the user might write the program (omitting the type signature); Fig. 3.4b shows the equivalent program
written without smart constructors.

3.2 Model environments

Model environments are a type-safe interface for assigning observed values to the conditionable variables
of a model. For the sake of compositionality, models should only need to mention the conditionable
variables they make use of, and be polymorphic in the rest. Moreover, a given conditionable variable
may bind multiple successive values at runtime – one for each time the variable is evaluated (as seen
in Section 2.1.1.1). These two design constraints suggest a representation of model environments as
extensible records, where the �elds are conditionable variable names and the values are lists of observed
values. We encode these ideas in Fig. 3.5.

Model environments are represented by the datatype Env env. Its type parameter env describes the
type of the environment as a type-level list of pairs Assign x a, with the constructor (B) associating
type-level strings x of kind Symbol with value types a of kind Type; this tracks the variable names in the

24

environment and their corresponding types. The constructor ENil is the empty environment, and the
constructor ECons takes a list of values of type a and an environment of type env and prepends a new
entry for x, producing an environment of type (x B a) : env.

The conditionable variable names in Env, being type-level strings of kind Symbol, have no value
representation; to then use them as record �elds at the value-level, we give the singleton datatype
CondVar x, acting as a container for Symbols by storing them as a phantom parameter x. String values
can be neatly promoted to such containers by deriving an instance of the IsLabel class from Haskell’s
OverloadedLabels language extension; this enables values of type CondVar to be created using the #

syntax, so that for example, the value #foo has the type CondVar "foo".
Model environments are then constructed using the in�x cons-like operator (•), which makes use of

the (:=) constructor at the value-level. For instance:

example_env :: Env [("m" B Double), ("c" B Double), ("y" B a)]

example_env = (#m B [0.5]) • (#c B [3.0]) • (#y B []) • ENil

Finally, type-safe access (get) and updates (set) to conditionable variables is done via the type class
Conditionable env x a, which asserts that the association x B a is present in env. Many conditionable
variables of the same type can be speci�ed with the type family Conditionables env xs a, which returns a
nested tuple of constraints Conditionable env x a for each variable x in xs.

3.3 Semantics for multimodal models

We now turn to using e�ect handlers for specialising, or conditioning, a multimodal model according to a
given model environment. This has two stages: (i) handling EnvRW env by reading observed values from
a given environment (Section 3.3.1), and (ii) handling MulDist by interpreting primitive distributions in
response to whether observed values have been provided (Section 3.3.2). We illustrate how these two
handlers compose to produce a concrete model that samples and observes (Section 3.3.3), which can
then be executed by a simulation or inference algorithm (Section 3.3.4).

3.3.1 E�ect handler: reading from model environments

The handler handleEnvRW (top, Fig. 3.6) interprets EnvRW env by maintaining a pair of input and output
environments (envin, envout), where envout is initially the emptied input environment via initEmpty.

Upon encountering a request EnvRead G to read from G , the list of values associated with G is looked
up in the input environment envin. If the list is non-empty in (v:vs), the head value v becomes the current
observation of G and is removed from envin; this ensures that no observed value is conditioned on more
than once during an execution, and that the order in which observations are consumed matches the
execution order. Otherwise for the empty list [], there is no observation for G and envin is unchanged.

For the request EnvWrite G v to write a value v to G , the current values for G in the output environment
envout are prepended by v. The �nal output environment is returned alongside the computation’s result,
discarding the input environment.

3.3.2 E�ect handler: multimodal distributions

The handler handleMulDist (middle, Fig. 3.6) handles the MulDist e�ect by interpreting each multimodal
distribution as either a sampling or observing operation, depending on the presence or absence of an

25

E�ect handler: reading and writing for model environments

handleEnvRW :: Env env→ Handler (EnvRW env) es a (a, Env env)
handleEnvRW envin = handleWith (envin, initEmpty envin) hval hop where

hval (_ , envout) x = Val (x , envout)
hop (envin, envout) (EnvRead G) k = case get G envin of

(v : vs) → k (set G vs envin, envout) (Just v)
[] → k (envin, envout) Nothing

hop (envin, envout) (EnvWrite G v) k = let vs = get G envout
in k (envin, set G (v:vs) envout) ()

initEmpty :: Env env → Env env
initEmpty (ECons _ env) = ECons [] (initEmpty env)

E�ect handler: interpreting multimodal distributions as sampling or observing

handleMulDist :: (Sample ∈ es, Observe ∈ es)⇒ Handler MulDist es a a
handleMulDist = handle Val hop where

hop (MulDist d maybey) k = case maybey of Just y → call (Observe d y) >>= k
Nothing→ call (Sample d) >>= k

data Sample a where
Sample :: Dist d a ⇒ d→ Sample a

data Observe a where
Observe :: Dist d a ⇒ d→ a→ Observe a

Conditioning multimodal models to concrete models

conditionWith :: Env env → MulModel env [EnvRW env, MulDist, Observe, Sample, IO] a
→ Model (a, Env env)

conditionWith envin = handleMulDist ◦ handleEnvRW envin ◦ runMulModel

type Model a = Comp [Observe, Sample, IO] a

Figure 3.6: Specialising multimodal models to concrete models

observed value. This introduces two new e�ects, Sample and Observe, each with a single operation;
Sample takes a distribution to sample from, whereas Observe takes a distribution and an observed value.
Then handleMulDist will try to retrieve the observed value of each MulDist call; if there is such a value,
we call a corresponding Observe operation, and otherwise we call Sample.

3.3.3 Conditioning multimodal models to concrete models

The composition of these two handlers, conditionWith (bottom, Fig. 3.6), will condition a multimodal
model under a given model environment, producing a concrete model of type Model that can Sample and
Observe. These two e�ects characterise the minimal interface assumed by most inference algorithms,
and for simplicity here, we assume they are the only model e�ects required, along with IO for random
number generation. 1 Hence conditionWith �xes the e�ect signature of MulModel, a detail which is kept
hidden from the user when writing multimodal models.

To illustrate, consider applying conditionWith to the coinFlip model from earlier, written again

1Any monad for random number generation is �ne. It is also possible to remove IO entirely from the signature, or keep
the signature polymorphic, or extend (weaken) the signature with new e�ects after conditioning.

26

at the top of Fig. 3.7, and using the input environment (#p B [0.5]) • (#y B []) • ENil. First applying
handleEnvRW would produce coinFlip′ as an intermediate program, in which all distributions calls have
been parameterised by either a concrete observed value or Nothing, and their results written to an output
environment. 2 Then applying handleMulDist would yield coinFlip′′.

coinFlip :: ... ⇒ MulModel ...
coinFlip = do

maybep ← call (EnvRead #p)
p ← call (MulDist (Uniform 0 1) maybep)
call (EnvWrite #p p)

maybey ← call (EnvRead #y)
y ← call (MulDist (Bernoulli p) maybey)
call (EnvWrite #y y)
return y

handleEnvRW ((#p B [0.5]) • (#y B []) • ENil)
www�

coinFlip ′ = do
p ← call (MulDist (Uniform 0 1) (Just 0.5))
y ← call (MulDist (Bernoulli p) Nothing)
return (y, (#p B [p]) • (#y B [y]) • ENil)

handleMulDist
www�

coinFlip ′′ :: ... ⇒ Model ...
coinFlip ′′ = do

p ← call (Observe (Uniform 0 1) 0.5)
y ← call (Sample (Bernoulli p))
return (y, (#p B [p]) • (#y B [y]) • ENil)

Figure 3.7: Applying conditionWith to a multimodal model and model environment

3.3.4 E�ect handlers for executing models

Finally, having specialised a multimodal model, we show how the resulting Model can be fully executed
as a top-level program: by assigning a semantics to its Observe e�ect and to its Sample e�ect. These two
steps are su�cient to implement our simple examples of Simulation and Likelihood Weighting inference
below. Sophisticated inference tasks require more thought, and is the topic of Part II where we embark
on programmable inference.

3.3.4.1 Simulation

The most basic interpretation of a model, as a generative process with no inference, is usually called
simulating the model: it runs the provided model by using observed data when available and otherwise
drawing new samples. We de�ne this as the handler composition simulate in Fig. 3.8 (and the variant
simulateWith for multimodal models). The handler defaultObserve performs no conditioning side-e�ects,

2The discarded input environment would be (#p B []) • (#y B []) • ENil, where #p is fully consumed and #y is unchanged.

27

and instead trivially interprets Observe d y operations to return the observed value y via the continuation
k. The handler defaultSample interprets Sample d operations, as long as IO is also present in the e�ect
signature, by �rst drawing a random value r uniformly from the interval [0, 1] using the IO function
random, and then generating a sample from d using draw. Then runImpure discharges the �nal e�ect IO,
yielding a top-level Haskell program which can be executed.

Model execution

simulateWith :: Env env → MulModel env [EnvRW env, MulDist, Observe, Sample, IO] a
→ IO (a, Env env)

simulateWith envin = simulate ◦ conditionWith envin

simulate :: Model a→ IO a
simulate = runImpure ◦ defaultSample ◦ defaultObserve

Auxiliary handlers

defaultObserve :: Handler Observe es a a
defaultObserve = handle Val hop where

hop (Observe d y) k = k y

defaultSample :: IO ∈ es⇒ Handler Sample es a a
defaultSample = handle Val hop where

hop (Sample d) k = do r ← call random ; k (draw d r)

random :: IO Double

Figure 3.8: Simulation

3.3.4.2 Likelihood Weighting inference

Given a model, and some observed data for a subset of its variables, inference tries to learn how the
other variables are distributed with respect to those observations. The most vanilla form of inference
is perhaps Likelihood Weighting (LW) [Meent et al. 2018]; the idea is that if one uses simulation as a
process for randomly proposing new samples, then the LW algorithm assigns to each proposal a weight,
that is, the total likelihood of them having generated the observed data. To implement this in Fig. 3.9,
we interpret Observe using the likelihood handler, which sums the log likelihood F over all observations
with 0 as the starting value. The function lw then repeats this for n iterations, generating a list of random
proposals and their associated weights.

28

Model execution

lwWith :: Int → Env env→ MulModel env [EnvRW env, MulDist, Observe, Sample, IO] a
→ IO [((a , Env env), LogP)]

lwWith n envin = lw n ◦ conditionWith envin

lw :: Int → Model a→ IO [(a, LogP)]
lw n = replicateM n ◦ runImpure ◦ defaultSample ◦ likelihood

Auxiliary handlers

likelihood :: Handler Observe es a (a , LogP)
likelihood = handleWith 0 (_F x→ Val (x,F)) hop where

hopF (Observe d y) k = k (F + logProb d y) y

Figure 3.9: Likelihood Weighting inference

3.4 A case study in modular, multimodal models

This section demonstrates our support for modular, �rst-class, multimodal models, by implementing a
realistic case study with real-world applications: a compartmental model for the spread of infectious
diseases. Section 3.4.1 introduces our running example, the SIR (Susceptible-Infected-Recovered) model
for the spread of disease [F. Liang and Li 2021]. Section 3.4.2 and Section 3.4.3 use the SIR model to show
how our language supports higher-order models which can be easily extended and adapted. Section3.4.4
shows how a multimodal model can be used for both simulation and inference in the same application
to facilitate Bayesian bootstrapping.

3.4.1 The SIR model for epidemic modelling

The SIR model predicts the spread of disease in a �xed population of size = partitioned into three groups:
B for susceptible to infection, 8 for infected, or A for recovered. The model tracks how B , 8 , and A vary over
discrete time C measured in days. Because testing is both incomplete and unreliable, the true B8A values for
the population cannot be directly observed; however, we can observe the number of reported infections
b . This problem is thus a good �t for the Hidden Markov Model introduced in Section 2.1.1, where the
B8A values play the role of latent states of type Population, and b as the observations of type Reported:

B8A1 B8A2 B8A3

b1 b2 b3

... ...

type Reported
= Int

data Population
= Population { B :: Int , 8 :: Int , A :: Int }

We now show how our language can be used to implement the SIR model as a modular HMM, starting
with the transition (→) and observation (↑) models.

3.4.1.1 SIR transition model

The transition model describes how the B8A values change over a single day. We model two speci�c
dynamics. First, susceptible individuals B transition to infected 8 at a rate determined by the values of
B and 8 and the contact rate V between the two groups. We use a binomial distribution to model each

29

person in B having a 1 − 4−V8/= probability of becoming infected, and update B and 8 accordingly:

transB8 :: Double→ Population→ MulModel env es Population

transB8 V (Population B 8 A) = do
let = = B + 8 + A

XB8 ← binomial′ B (1.0 − exp ((−V ∗ 8) / =))

return (Population (B − XB8) (8 + XB8) A)

Second, infected individuals 8 transition to the recovered group A , where a �xed fraction W of people
will recover in a given day. Again we use a binomial to model each person in 8 as having a probability of
1 − 4−W of recovering, and use this to update 8 and A :

trans8A :: Double→ Population→ MulModel env es Population

trans8A W (Population B 8 A) = do
X8A ← binomial′ 8 (1.0 − exp (−W))

return (Population B (8 − X8A) (A + X8A))

The overall transition model transB8A is simply the sequential composition of transB8 and trans8A . Given
V and W , aggregated into the type TransParams, transB8A computes the changes from B to 8 and then 8 to A
to yield the updated B8A population over a single day:

data TransParams = TransParams { V :: Double, W :: Double }

transB8A :: TransParams→ Population→ MulModel env es Population

transB8A (TransParams V W) = transB8 W >=> trans8A V

3.4.1.2 SIR observation model

For the observation model, we assume that the reported infections b depends only on the number of
infected individuals 8 , of which a �xed fraction d will be reported. We use the Poisson distribution to
model reports occurring with a mean rate of d ∗ 8:

type ObsParams = Double

obsB8A :: Conditionable env "b" Int⇒ ObsParams→ Population→ MulModel env es Reported

obsB8A d (Population _ 8 _) = do
b ← poisson (d ∗ 8) #b

return b

Since we intend this as the observation model, we declare conditionable variable #b with type Int in the
Conditionable constraint, and attach it to the Poisson distribution so we can provide it observations to
condition on later.

3.4.1.3 HMM for the SIR model

Now the transition and observation models can be combined into a HMM. We build on our modular
HMM design from Fig. 2.2, but go a step further by de�ning it as a higher-order model in Fig. 3.10,
parameterised by its two abstract sub-models of type TransModel and ObsModel; here, ps represents the
types of the model parameters, and lat and obs are the types of latent states and observations. Then in
hmm, the input models transPrior and obsPrior are �rst used to generate the model parameters \ and q ,
which are provided to transModel and obsModel respectively.

30

type TransModel env es ps lat = ps → lat → MulModel env es lat
type ObsModel env es ps lat obs = ps → lat → MulModel env es obs

hmm :: MulModel env es ps1 → MulModel env es ps2
→ TransModel env es ps1 lat→ ObsModel env es ps2 lat obs
→ Int→ lat→ MulModel env es lat

hmm transPrior obsPrior transModel obsModel = G0 = do
\ ← transPrior
q ← obsPrior
hmmNode G8−1 = do G8 ← transModel \ G8−1

~8 ← obsModel q G8
return G8

foldl (>=>) return (replicate n hmmNode) G0

Figure 3.10: A higher-order Hidden Markov Model

We can now de�ne the complete SIR model in Fig. 3.11. From an initial population B8A of susceptible,
infected, and recovered individuals, hmmB8A models the change in B8A over C days given reported infections
b . Its transition and observation parameters are provided by models transPriorB8A and obsPriorB8A using
primitive distributions gamma and beta; their conditionable variables #V , #W , and #d will let us condition
on those parameters later:

hmmB8A :: (Conditionable env "b" Int, Conditionables env ["V" , "W" , "d"] Double)
⇒ Int→ Population→ MulModel env es Population

hmmB8A = hmm transPriorB8A obsPriorB8A transB8A obsB8A

transPrior B8A :: Conditionables env ["V" , "W"] Double
⇒ MulModel env es TransParams

transPrior B8A = do
V ← gamma 2 1 #V
W ← gamma 1 (1/8) #W
return (TransParams V W)

obsPriorB8A :: Conditionable env "d" Double
⇒ MulModel env es ObsParams

obsPriorB8A = do
d ← beta 2 7 #d
return d

Figure 3.11: SIR model, using a higher-order Hidden Markov Model

We can simulate over this model, perhaps to explore some expected model behaviours, by specifying
an input model environment sim_envin of type Env SIRenv that provides speci�c values for #V, #W , and
#d , but provides no values for reported infections #b (ensuring that we always sample for b). Applying
simulateWith sim_envin to hmmB8A 100 with an input population simulates the spread of the disease over
100 days.

type SIRenv = ["V" := Double, "W" := Double, "d" := Double, "b" := Int]

simulateSIR :: IO (Population , Env SIRenv)

simulateSIR = do
let sim_envin = (#V B [0.7]) • (#W B [0.009]) • (#d B [0.3]) • (#b B []) • ENil

simulateWith sim_envin (hmmB8A 100 (Population 762 1 0))

This returns the �nal population B8A100 plus an output model environment envout mapping each condi-
tionable variable to the values sampled for that variable during simulation. From this we can extract the
reported infections bs:

31

do (B8A100 :: Population, sim_envout :: Env SIRenv)← simulateSIR

let bs :: [Reported] = get #b envout

...

Fig. 3.12a shows a plot of these b values and their corresponding latent (population) states; but note that
as it stands, the model provides no external access to the latent states shown in the plot, except the �nal
one B8A100. Instrumenting the model with new e�ects, such as for recording the intermediate B8A states, is
straightforward with algebraic e�ects, shown in Section 3.4.3.

(a) SIR (b) with resusceptible (c) with resusceptible + vacc

Figure 3.12: SIR model: Simulation

3.4.2 Extending the SIR model with new behaviours

Although the SIR model is simplistic, realistic models may be uneconomical to run or too speci�c to be
useful. When designing models, statisticians aim to strike a balance between complexity and precision,
and modular models make it easier to incrementally explore this trade-o�. We support this claim by
showing how two possible extensions of the SIR model are made easy in our language; while these are
by no means the most modular solutions possible, they should su�ce to make our point.

Suppose our disease does not confer long-lasting immunity, so that recovered individuals A transition
back to being susceptible B after a period of time [Shi et al. 2008]. We can model this resusceptibility as a
new transition behaviour:

data TransParams = TransParams { V :: Double, W :: Double, d :: Double, [:: Double }

transAB :: TransModel env es Double Population

transAB [(Population B 8 A) = do
XAB ← binomial′ A (1.0 − exp (−[))

return (Population (B + XAB) 8 (A - XAB))

transB8AB :: TransModel env es TransParams Population

transB8AB (TransParams V W [) = transB8 V >=> trans8A W >=> transAB [

We need only modify TransParams to include a new parameter [; de�ne a new transition sub-model
transAB (parameterised by [) that stochastically moves individuals from recovered A to susceptible B; and
then de�ne transB8AB to compose transAB with our existing transition behaviours. A simulation of the
resulting system is shown in Fig. 3.12b.

Now consider adding a variant where susceptible individuals B can become vaccinated E as a new
sub-population [Ameen et al. 2020].

32

data Population = Population { B :: Int , 8 :: Int , A :: Int , E :: Int }

data TransParams = TransParams { V :: Double, W :: Double, d :: Double, [:: Double, l :: Double }

transBE :: TransModel env es Double Population

transBE l (Population B 8 A E) = do
XBE ← binomial′ B (1.0 − exp (−l))

return (Population (B - XBE) 8 A (E + XBE))

transB8ABE :: TransModel env es TransParams Population

transB8ABE (TransParams V W [l) = transB8 V >=> trans8A W >=> transAB [>=> transBE l

We add �eld E to Population for vaccinated individuals, and add l to TransParams representing the rate
at which individuals B transition to E ; the new behaviour is then expressed by transBE , composed into the
overall transition model transB8ABE . A simulation of this is shown in Fig. 3.12c.

3.4.3 Extending the SIR model with additional e�ects

When building a multimodal model, users are not restricted to using only the two base e�ects EnvRW

and MulDist; the e�ect signature es in MulModel env es a can be easily extended with an arbitrary desired
e�ect e, by (i) constraining the model with e ∈ es, and then (ii) handling e with a corresponding handler.

As an example, the SIR model simulation in Fig. 3.12a plotted all intermediate B8A values of type
Population over C days, despite our implementation only returning the �nal one:

−− previously
hmmB8A :: (Conditionable env "b" Int, Conditionables env ["V" , "W" , "d"] Double)

⇒ Int→ Population→ MulModel env es Population

hmmB8A = hmm transPriorB8A obsPriorB8A transB8A obsB8A

To record all B8A values, we introduce the constraint Writer w ∈ es to require es contain the well-
known e�ect Writer w, representing computations that produce a stream of data of type w; here we
choose w to be a list of B8A values [Population]. The transition model transB8A can now call the Writer

operation Tell to concatenate each new B8A value to the existing trace of values.

data Writer w a where
Tell :: w→Writer w ()

transB8A :: Writer [Population] ∈ es⇒ TransModel env es TransParams Population

transB8A (TransParams V W) B8A = do
B8A ′← (transB8 V >=> trans8A W) B8A

call (Tell [B8A ′])

return B8A ′

Models with user-speci�ed e�ects can then be reduced into a form suitable for conditioning under
a model environment (Section 3.3.3), by handling those e�ects beforehand with a suitable handler.
Assuming hmmB8A now uses the new transition model above, composing hmmB8A with handleWriter will
interpret the Tell operations, producing a new SIR model hmm′B8A that returns the trace of B8A values as
an additional output of type [Population]. 3

3An omitted detail is the lifting of call and handleWriter from type Comp into MulModel; see Fig. A.1.

33

handleWriter :: Monoid w⇒ Handler (Writer w) es a (a , w)

handleWriter = handleWith mempty (_w x→ Val (x, w)) hop where
hop w (Tell w’) k = k (w `mappend` w’) ()

hmm′B8A :: (Conditionable env "b" Int, Conditionables env ["V" , "W" , "d"] Double)

⇒ Int→ Population→ MulModel env es (Population, [Population])

hmm′B8A C = handleWriter ◦ hmmB8A C

3.4.4 Exploring multimodality in the SIR model

We now show how our support for higher-order, modular models is complemented by the �exibility of
multimodal models. Suppose the goal were to infer SIR model parameters V,W, d given data on reported
infections b . Ideally we would have a real dataset of reported infections to condition on. But what if our
dataset were sparse, or if we were interested in quick hypothesis testing? A common option is to use
simulated data as observed data, a method called Bayesian bootstrapping [Fushiki 2010]. This task is
made simple with multimodal models, because we can take the outputs from simulation over a model
and plug them into an environment that speci�es inference over the same model:

inferSIR :: Env SIRenv→ IO [(Population, Env SIRenv)]

inferSIR sim_envout = do
let bs = get #b sim_envout

infer_env in = (#V B []) • (#W B [0.0085]) • (#d B []) • (#b B bs) • ENil

ssmhWith 50000 infer_envin (hmmB8A 100 (Population 762 1 0))

Here we take the output model environment sim_env>DC produced by simulateSIR, and use its b values to
de�ne an input model environment infer_env8= that conditions against #b . Moreover, suppose we already
have some con�dence about a particular model parameter, such as the recovery rate W ; for e�ciency,
we can avoid inference on W by setting #W to an estimate 0.0085 and sampling only for the remaining
parameters #V and #d . We then run Single-Site Metropolis-Hastings inference [Wingate, Stuhlmueller,
et al. 2011] for 50,000 iterations, which returns a list of output environments containing the values
sampled from all iterations. 4

The inferred distributions for V and d can then be obtained simply by extracting their samples from
those environments:

do (_ , infer_envs>DC)← fmap unzip (inferSIR sim_envout)

let Vs = concatMap (get #V) infer_envs>DC
ds = concatMap (get #d) infer_envs>DC

These are visualised in Fig. 3.13. Values around V = 0.7 and d = 0.3 occur more frequently, because these
were the parameter values provided in simulateSIR in Section 3.4.1.

4The core algorithm is implemented in Part II: Fig. 5.5, and is used to de�ne ssmhWith in Fig. A.2.

34

(a) SIR V inferred distribution (b) SIR d inferred distribution

Figure 3.13: SIR model: Single-Site Metropolis-Hastings inference

3.5 Qualitative evaluation and related work

This section empirically evaluates our modelling language in terms of supported model features, com-
paring with a wide range of modern PPLs in Table 3.1. To the best of our knowledge, ours is the �rst
PPL to fully support both multimodal and higher-order models. It is also the �rst general-purpose PPL
with multimodal models in a statically typed paradigm. 5 We next discuss some of the PPLs’ approaches
for implementing models, and explain the presence or absence of their supported modelling features.

Table 3.1: Comparison of PPLs in terms of supported model features, where is full support, is partial support,
and is no support. Modular models are those that are de�nable in terms of other models.

Modelling features ProbFX Gen Turing Pyro Edward Stan MonadBayes Anglican WebPPL
Multimodal
Modular
Higher-order
Type-safe

3.5.1 Approaches for implementing probabilistic models

3.5.1.1 Gen

Gen [Cusumano-Towner et al. 2019], embedded in Julia as a host language, implements multimodal
models via macros, which are procedures that take input expressions and generate modi�ed expressions
at parse-time. In Fig. 3.14a, the @gen macro transforms a regular Julia function into a “dynamic model”
object written in a special shallow-embedded DSL. The (∼) macro in x ∼ d says that x is a random variable
distributed by d, and that its random behaviour is traced. A traced variable can later be interpreted
as either observe or sample by executing the model with Gen.generate: a runtime DSL interpreter that
constrains @gen-type functions by a dictionary of observed values, and produces a sample trace subject
to those constraints [Cusumano-Towner 2020].

5Stan [Carpenter et al. 2017] is type-safe but special-purpose.

35

The support for higher-order models is limited in a sense. Although @gen functions can interact
with each other in a higher-order way, applying a regular function to one will “escape” the tracing of its
random variables. For example with mapLinRegr in Fig. 3.14b, applying map to the linRegr model will
demote that model to a regular function, preventing it from being multimodal or used in any inference
procedures. Circumventing this requires some programmer intervention, for example via mapLinRegr′

which uses a top-level (∼) to trace the linRegr model itself. Alternatively, Gen provides special model
combinators like Gen.Map, that take @gen functions as input and return new @gen functions.

@gen function linRegr(x)
m ∼ normal(0, 1)
c ∼ normal(0, 2)
y ∼ normal(m ∗ x + c, 1)

end

observe y = 2.3, and sample for m and c
constraints = Gen.choicemap((:y, 2.3))
(trace , _) = Gen.generate(linRegr , (1.0,)

, constraints)

(a) Writing and specialising multimodal models

treats linRegr as black box function
@gen function mapLinRegr(xs)

ys = map(linRegr, xs)
end

treats linRegr as multimodal model
@gen function mapLinRegr′(xs)

ys = map((i , x) → {i} ∼ linRegr (x)
, enumerate(xs))

end

(b) Higher-order treatment of multimodal models

Figure 3.14: Gen: linear regression

3.5.1.2 Turing

Turing [Ge et al. 2018] is another PPL in Julia that uses macros to implement models, in Fig. 3.15a. The
@model macro is used rewrite Julia functions into model objects, similar to Gen. Whereas Gen uses a
DSL interpreter to support multimodality, Turing does this entirely through the (∼) macro. In particular,
Turing allows each argument of the @model function to be used/treated as a random variable inside
the model (Fig. 3.15a); by providing the missing argument for m, this causes m ∼ Normal(0, 1) to be
rewritten to a Sample operation, whereas providing the observed value 2.3 for y results in Observe. An
interesting feature of the approach is that it allows random variables to be indexed like regular variables;
for example, by passing a list of observed values for argument y, and then writing y[i] ∼ Normal (...)

inside the model. This becomes convenient for expressing multiple observations for the same random
variable name.

These models are not completely modular. Consider Fig. 3.15b which tries to modularise linRegr into
calling a sub-model prior for generating parameters m and c. The refactoring linRegrModular is illegal
because, unlike primitive distributions such as Normal, Turing’s @model terms cannot be bound (∼) to
random variables; this is in contrast to @gen models in Gen (Fig.3.14b). The alternative is linRegrModular′

which assigns (=) the result of prior to a regular variable, demoting prior from a model to a regular
function, unable to be used for inference (similar to when using higher-order functions with Gen models).

36

@model function linRegr(x, y, m, c)
m ∼ Normal(0, 1)
c ∼ Normal(0, 2)
y ∼ Normal(m ∗ x + c, 1)

end

observe y = 2.3, and sample for m and c
linRegr (1.0, 2.3, missing, missing)

(a) Writing and specialising multimodal models

@model function prior(m, c)
m ∼ Normal(0, 1)
c ∼ Normal(0, 2)
return (m, c)

end

invalid, cannot bind models to random variables
@model function linRegrModular(x, y, m, c)

(m, c) ∼ prior (m, c)
y ∼ Normal(m ∗ x + c, 1)

end

treats prior as black-box function
@model function linRegrModular′(x, y, m, c)

(m, c) = prior (m, c) ()
y ∼ Normal(m ∗ x + c, 1)

end

(b) Modular treatment of multimodal models

Figure 3.15: Turing: linear regression

3.5.1.3 Pyro and Edward

Pyro [Bingham et al. 2019] and Edward [Moore and Gorinova 2018] are PPLs in Python that use Python
coroutines to support multimodal models. We explain this for Pyro (but the same description holds
for Edward). In Fig. 3.16, models are regular Python functions that use the Pyro primitive sample(s, d),
where s is a string representing a random variable name, and d is a distribution. The programmer can
later choose to interpret sample operations as observe operations instead, by wrapping their model with
the coroutine ConditionMessenger, and providing a dictionary from variable names to observed values.
Then upon model execution, each call to sample will defer control to the ConditionMessenger coroutine,
which overrides the default behaviour of random sampling to return the observed value (if provided
in the dictionary). While the approach of Python coroutines initially resembles e�ect handlers, the
details are quite di�erent; we discuss this when comparing with Pyro and Edward for programmable
inference (Section 5.6.1).

Because functions in Python are �rst-class, so are models in Pyro. However, the support for higher-
order models is slightly limited. Pyro uses the string argument s in sample(s, d) to uniquely identify
each probabilistic operation invoked at runtime, and so the same random variable name may arise no
more than once during model execution. Violating this, such as mapLinRegr in Fig. 3.16b, results in a
runtime crash. This prevents models in general from being iterated over; instead, potential iterative
behaviour must be foreseen when de�ning the model itself, for example mapLinRegrIdx which creates a
new variable name for each iteration.

37

def linRegr (x):
m = sample("m", Normal(0, 1))
c = sample("c" , Normal(0, 2))
y = sample("y" , Normal(m ∗ x + c, 1))
return y

observe y = 2.3, and sample for m and c
with ConditionMessenger(data={"y" =2.3}):

y = linRegr (1.0)

(a) Writing and specialising multimodal models

crashes, if length(xs) > 1
def mapLinRegr(xs):

ys = map(lambda x: linRegr(x), xs)

good
def mapLinRegrIdx(xs):

ys = map(linRegrIdx, enumerate(xs))

def linRegrIdx(x, i) :
m = sample("m" + str (i), Normal(0, 1))
c = sample("c" + str (i), Normal(0, 2))
y = sample("y" + str (i), Normal(m ∗ x + c, 1))
return y

(b) Higher-order treatment of multimodal models

Figure 3.16: Pyro: linear regression

3.5.1.4 MonadBayes

MonadBayes [Ścibior, Kammar, and Ghahramani 2018] is a Haskell-embedded PPL like our language,
but based on an e�ect framework called the Monad Transformer Library (MTL) [S. Liang et al. 1995; Gill
2022], which is the main alternative to algebraic e�ects for typed functional programming languages.
The idea in Fig. 3.17, is to represent the model type m as an abstract stack of monads (e�ect types)
that implement the type classes MonadSample and MonadCond, providing modelling operations for
sampling (e.g. normal) and observing (score). Upon model execution, this abstract stack is specialised to
some concrete arrangement of monads, determining the speci�c type class instances for sampling and
observing that are called.

Embedding into Haskell means that models in MonadBayes are both �rst-class and statically typed.
Models are however not multimodal, being de�ned explicitly in terms of sampling and observing
operations, and thus requiring each “specialisation” of the same underlying model in Fig. 3.17 to be
written from scratch. We are not aware whether the MTL approach can be used to support multimodal
models. As the focus of MonadBayes is on designing modular inference algorithms rather than models, we
defer the main discussion of MTL for probabilistic programming to Part II, after implementing inference.

linRegrSim :: (MonadSample m, MonadCond m)
⇒ Double→ Double→ Double→ m Double

linRegrSim x m c = do
y ← normal (m ∗ x + c) 1
return y

(a) Simulation

linRegrInf :: (MonadSample m, MonadCond m)
⇒ Double→ Double→ m (Double, Double)

linRegrInf x y = do
m← normal 0 1
c ← normal 0 2
score (normalPdf (m ∗ x + c) 1 y)
return (m, c)

(b) Inference

Figure 3.17: MonadBayes: linear regression

3.5.1.5 Anglican and WebPPL

In Anglican [Tolpin et al. 2016] (in Clojure) and WebPPL [Goodman and Stuhlmüller 2014] (in Javascript),
the user de�nes models in terms of explicit sample and observe operations, and so like MonadBayes,

38

these models are not multimodal. The examples in Fig. 3.18 and Fig. 3.19 hence follow the same pattern
of model duplication as Fig. 3.17.

Their embedding of models is similar in some ways to our algebraic e�ect representation. Both
languages compile models using a continuation-passing-style (CPS) transformation, creating breakpoints
at each sample and observe operation which store their continuations. Executing the model then consists
of intercepting at those operations, performing some desired side computation, and then using the
continuations to resume execution – akin to how e�ect handlers work. As far as we know, compilation
of models into CPS has not been used for multimodality.

(defquery linRegrSim [x m c]
(let [y (sample (normal (m ∗ x + c) 1))]

{: y y }))

(a) Simulation

(defquery linRegrInf [x y]
(let [m (sample (normal 0 1))

c (sample (normal 0 2))
y (observe (normal (mu ∗ x + c) 1) y)]
{: mu mu :c c :y y }))

(b) Inference

Figure 3.18: Anglican: linear regression

var linRegrSim = function(x, m, c) {
y = sample(Normal(m ∗ x + c, 1) , y)
return y

}

(a) Simulation

var linRegrInf = function(x, y) {
m = sample(Normal(0, 1))
c = sample(Normal(0, 2))
observe(Normal(m ∗ x + c, 1) , y)
return (m, c)

}

(b) Inference

Figure 3.19: WebPPL: linear regression

3.5.1.6 Type safety

Multimodal PPLs require a way of naming random variables and providing them observed values. Our
language takes a typed approach to this, using type-level strings to statically identify random variables,
and type classes to constrain their types of observations (Section 3.2). The other discussed approaches
to multimodality use just-in-time compilation (Turing, Gen) or are dynamically typed (Pyro, Edward),
and so do not guarantee that certain random variables exist, or that the observed values provided to
them are of the correct type.

3.5.1.7 Performance

We quantatively evaluate our language later in Part II. Although those results mainly compare inference,
they also suggest our approach to multimodality does not notably a�ect performance, competing well
against Gen (which supports multimodal models) and MonadBayes (which does not).

3.5.2 Other related work

Tagless-�nal shallow embedding as conceived by Kiselyov [2010] has been used as an embedding
technique for typed functional PPLs, demonstrated by Kiselyov and Shan [2009] with OCaml as a host
language, and Narayanan et al. [2016] who embed into Haskell. The idea is to capture the syntax of the

39

PPL as type class methods, where di�erent class instances map the probabilistic program to di�erent
inference semantics. This is well suited to mapping entire programs uniformly into a semantic domain,
but we found the approach di�cult to compose semantics with; in particular, for composing the steps
needed to interpret a multimodal model as a concrete model execution.

Monads The �rst use of Haskell for probabilistic programming is perhaps by Erwig and Kollmans-
berger [2006]. They restrict models to being discrete distributions implemented as the probability
monad [Giry 2006]: a list that pairs all possible samples and their probabilities. By sequencing the
operations of the monad with (>>=), this evolves the overall distribution analogously to how a probability
tree grows.

Free monads The underlying data structure used to implement our algebraic e�ect framework was
the free monad. Ścibior, Ghahramani, et al. [2015] embed primitive and conditional distributions in
Haskell using an intermediate free monad representation; this bears an initial resemblance to our
approach but the semantics are instead provided using type classes. Because their language directly
implements conditional distributions, their models are also not multimodal. Later work by Ścibior,
Kammar, and Ghahramani [2018] more closely coincides with our approach: they use free monad
transformers [Schrijvers et al. 2019] to encode sample operations as syntax, allowing sample to be later
interpreted as either drawing a new random value, or as reusing an old one instead.

Probabilistic logic languages ProbLog [De Raedt et al. 2007] is an extension of the language Pro-
log [Colmerauer 1990] which operates in a declarative logic-based paradigm, in contrast to the functional
and imperative languages discussed in Section 3.5. In Prolog, programs are de�ned in terms of two
types of clauses: facts and rules. Models in ProbLog are then programs with facts that only hold with a
speci�ed probability, and with rules that express the conjunction or disjunction of probabilistic facts.
A key bene�t of this declarative setting is the natural ability to specify models as relations between
random variables; ProbLog is also modular, allowing clauses to be individually de�ned and reused,
and multimodal, by allowing the user to specify observations with the special evidence keyword. A
possible limitation is that models can be lengthy, often containing a large sequence of facts and rules as
primitives [Vidal 2022]. However, the comparison of probabilistic logic languages with PPLs in general
is not straightforward, as the former moreso targets models expressable in terms of exact probability
values, rather than in terms of probability distributions.

40

CHAPTER4
A Formal Calculus for Multimodal Models

This chapter presents an idealised minimal calculus for a statically typed functional language with
multimodal models, capturing only the key ideas from the embedding in Chapter3. The calculus provides
a type-and-e�ect system for algebraic e�ects and handlers in a �ne-grain call-by-value setting [Levy
et al. 2003], extended with built-in constructs for conditionable variables, multimodal distributions, and
model environments.

We introduce syntax of the kinds, types, and terms of the language in Section 4.1; the kinding
and typing rules in Section 4.2 and Section 4.3; and �nally, the small-step operational semantics of the
language in Section 4.4, along with some of its formal properties.

4.1 Syntax

4.1.1 Type syntax

Fig. 4.1 gives the grammar for the kinds and types of the language.

Kinds consist of: Type for value types, Comp for computation types, E�ect and E�ectRow for
e�ects and rows of e�ects, and Handler for e�ect handlers.

Value types �, � include constants] (e.g. Booleans, integers), lists List �, and products � × �.
Functions have type � → � and map a value of type � to a computation of type � . The type system
also supports parametric polymorphism via the type ∀U : . �; this describes a computation of type �
that universally quanti�es over a type variable U of unspeci�ed kind .

Computation types �, � have the form � !', where � represents the return value, and ' is the e�ect
row specifying the e�ects that the computation may perform.

E�ects � are sets of type-assigned operations op : �→ �, specifying the argument type � and return
type � of operation op.

E�ect rows ' are unordered collections of e�ects � used to represent e�ect rows, where closed rows
end in empty Y and open rows end in row variables A ; using polymorphic (i.e. open) rows to capture
e�ects is one way of enabling modular programming in a type-and-e�ect system.

Handler types � have the form �⇒� � , which denotes that they interpret an e�ect � in an input
computation of type � , to produce an output computation of type � .

41

Kinds ::= Type | Comp | E�ect | E�ectRow | Handler

Type) ::= � | � | � | ' | �

Value type �, � ::=] | Maybe � | List � | � × � | �→ � | ∀U : . � | U

Computation type �, � ::= � !'

E�ect � ::= ∅ | {op : �→ �}] �

E�ect row ' ::= �;' | Y | A

E�ect handler type � ::= �⇒� �

Variables G,~, :

Row variables A

Conditionable variables G̃, ~̃

Kind environment Δ ::= Δ · (U :) | Y

Type environment Γ ::= Γ · (G : �) | Y

Model type environment Ω ::= Ω · (G̃ : �) | Y

Figure 4.1: Syntax: types

Type and kind environments For environments, we write (·) to express extending an environment
with a new variable binding, and Y for the empty environment. The standard kind environment Δ
associates type variables U to their kinds , and the type environment Γ maps term variables G to their
types� (where Γ is well-kinded under Δ if Δ maps every type in Γ to a kind). As well as regular variables
G , the language also has conditionable variables G̃ . The model type environment Ω then maps each G̃ to
its value type � (where Ω is well-kinded under Δ if Δ maps every type in Ω to a kind), and is used for
typing the model environments d̃ introduced next in Fig. 4.2.

4.1.2 Term syntax

Fig. 4.2 gives the term syntax, which distinguishes between values + , e�ectful computations " , and
e�ect handlers � .

Model environment d̃ . A model environment contains bindings (G̃ : +) that map conditionable
variables to their values, with Y being the empty environment. We consider d̃ as a set which is equivalent
up to reordering of its variables.

Values + ,* . Primitive values include variables G , constants 2 , the “maybe” constructors Just + and
Nothing, and the list constructors (+1 :: +2) and Nil. We also have value abstraction _G : �." and type
abstraction ΛU : ." .

Computations ", # . Basic computation terms include pure values return + , regular application
+1+2, type application + [)], and let-bindings let G ← " in # .

An arbitrary operation op is called by providing an appropriate argument+ . A primitive distribution
q can be thought of as a special kind of operation, and is called by providing its associated distribution
parameters+ . This can also be used in the special let-binding, let G̃ ∼ q + in " , to bind the result to a
conditionable variable G̃ ; if the current model environment d̃ contains a value for G̃ , then the expression
denotes conditioning against the likelihood of q + having generated that value, otherwise representing
sampling from q + . Finally, the handle term, with � handle " , interprets all the operations raised in

42

Model environment d̃ ::= d̃ · (G̃ : +) | Y

Value + ,* ::= G variable
2 constant
Just + | Nothing just, nothing
+1 :: +2 | Nil cons, nil
_G : �." function
ΛU : ." type abstraction

Handler � ::= {return G → "} return clause
{opG : → "}] � operation clause

Computation ", # ::= return + return
+1+2 application
+ [)] type application
op + operation call
q + distribution call
let G ← " in # let-bind
let G̃ ∼ q + in " let-bind (∼)
with � handle " handle

Figure 4.2: Syntax: terms

computation " that have an associated “operation clause” de�ned in the e�ect handler � .

Handlers � . An e�ect handler consists of exactly one return clause and a set of operation clauses,
where the notation] requires the clauses to be mutually exclusive in their associated operation. The
return clause {return G → "} describes how to handle the �nal return value of a handled computation:
by binding that value to G in the returned computation " . An operation clause {op G : → "} describes
how to interpret an operation op: by binding the operation’s argument to G , the operation’s continuation
to : , and returning the computation " .

4.2 Kinding

Fig. 4.3 gives the kinding rules for the language’s type system, where the judgement Δ `) : says that
type) may be assigned kind under a kind environment Δ.

The kind Type describes value types �, which include: the type constant] for constant values,
function types � → � , and polymorphic computation types ∀U : . � where is determined by the
entry for type variable U in the kind environment. Then, computation types � !' have kind Comp,
handler types �⇒� � with kind Handler, and e�ect rows �;' and n with kind E�ectRow. Lastly, an
e�ect � has kind E�ect where the built-in e�ects of the language include Dist, Sample, and Observe,
explained in Section 4.3.

43

Δ `) : Type) has kind under a kind environment Δ.

type constant

Δ `] : Type

function
Δ ` � : Type Δ ` � : Comp

Δ ` �→ � : Type

type variable
U : ∈ Δ
Δ ` U :

polymorphic computation
Δ · (U :) ` � : Comp

Δ ` ∀U : . � : Type

computation
Δ ` � : Type Δ ` ' : E�ectRow

Δ ` � !' : Comp

handler
Δ ` � : Comp Δ ` � : E�ect Δ ` � : Comp

Δ ` �⇒� � : Handler

e�ect row (non-empty)
Δ ` � : E�ect Δ ` ' : E�ectRow

Δ ` �;' : E�ectRow

e�ect row (empty)

Δ ` Y : E�ectRow

distribution e�ect

Δ ` Dist : E�ect

sample e�ect

Δ ` Sample : E�ect

observe e�ect

Δ ` Observe : E�ect

Figure 4.3: Kinding rules

4.3 Typing

This section describes the type system of the language for model environments, values, operations,
computations, and e�ect handlers.

4.3.1 Model environment types

Fig. 4.4 de�nes the typing rules for model environments. The judgement Δ; Γ ` d̃ : Ω says that if Γ and Ω

are well-kinded under Δ, then model environment d̃ may be assigned type Ω under Δ; Γ.
The model env (non-empty) rule for non-empty d̃ is non-standard w.r.t regular environments. It

requires the value of a given conditionable variable G̃ : � to be a list of type List �, thus associating
each G̃ to a trace of observed values; these values cannot be conditionable variables themselves.

4.3.2 Value types

Fig. 4.5 de�nes the typing rules for values. The judgement Δ; Γ;Ω ` + : � says that if Γ and Ω are
well-kinded under Δ, and Δ ` � : Type, then value + may be assigned type � under Δ; Γ;Ω.

A variable G has type � if the binding G : � is contained in the type environment Γ. A function

_G : �." takes a value argument G : � to return an arbitrary computation type " : � , and likewise for
type abstraction ΛU : ." but instead taking a type argument U : . There are also the just/nothing

cases of type Maybe �, and cons/nil cases of type List �, as usual; the decomposition Ω1] Ω2 in the
cons rule is explained later when typing computations (Fig. 4.7).

4.3.3 Operation types

Fig. 4.6 gives the type signatures for the language’s core operations – by �rst assuming a �xed set Φ
of primitive distributions q : � → �, where � is the type of parameters usually associated with the
distribution, and � is the type of values the distribution generates.

44

Primitive distributions are not technically operations, but rather act as a name in the syntax for
characterising three core e�ects. In particular, for each primitive distribution q : �→ � ∈ Φ:

• The e�ect Dist contains an operation distq that takes an extra argument of type Maybe � which
may or may not contain an observed value to condition q on.

• The e�ect Observe contains an operation observeq that takes an extra argument of type � as an
observed value to condition q on.

• The e�ect Sample contains an operation sampleq that simply samples from q .

The operations sampleq and observeq can thus be viewed as specialisations of distq with respect to
whether its argument of type Maybe � contains a value of type �.

4.3.4 Computation types

Fig. 4.7 de�nes the typing rules for computations. The judgement Δ; Γ;Ω ` " : � says that if Γ and Ω

are well-kinded in Δ, and Δ ` � : Comp, then computation " can be assigned type � under Δ; Γ;Ω.

De�nition 1 (Disjoint merge): Let Ω] Ω′ = Ω · Ω′ i� dom(Ω) ∩ dom(Ω′) = ∅

For computations that decompose into multiple sub-terms, De�nition (Disjoint merge) is used to
type each sub-term under a mutually exclusive model environment, preventing the same conditionable
variable G̃ from being referred to statically more than once in a program. This is used for application,
let-bind, and let-bind (∼), the last of which requires a bit more explanation.

A return expression return + has type � !' for arbitrary e�ect row ' whenever + : �. The
application rule for+1+2 is standard, providing the function+1 : �→ � with appropriate input+2 : � to
output a computation of type � . The type application rule for + [)] is similar, but where the type-level
function + : ∀U : . � is provided a type) as an input, binding this to type variable U in � .

In operation call for op + , given op : �→ � ∈ � and argument + : �, this outputs a computation of
type � ! (�;') where ' captures the rest of the possible e�ects in the containing computation; as row
types are unordered, �;' only speci�es that � is a member of the e�ect row. For the distribution call

rule for q + , which provides q : �→ � ∈ Φ with argument + : �, this produces a computation of type
� ! (Dist;') implying the operation distq ∈ Dist is invoked implicitly.

The standard let-bind, let G ← " in # , binds the return value of the bound computation " : � !'
to the local variable G : �, before proceeding with the body # : � !' which is typed under the same
e�ect row as " .

The special let-bind (∼) rule for let G̃ ∼ q + in " , given that q : �→ �, speci�cally decomposes
the model type environment into Ω] Ω′ · (G̃ : �). First, Ω is used to type the distribution’s argument
+ : �. Then, the type of values the distribution generates is associated to the bound conditionable
variable G̃ : �, which is in turn used to type the regular variable G : � sharing the same name; this
expresses that G may be one of the observed values of G̃ (recalling that conditionable variables are
assigned lists of values). Lastly, the body" is typed using the new local variable G : � and the remaining
model type environment Ω′.

The �nal rule, handle for handling computations, is similar to application. Given a handler of type
� ! (�;') ⇒� � !' for some e�ect �, applying this to an input of type � ! (�;') will yield an output of
type � !' where � has been discharged from the e�ect row.

45

4.3.5 Handler types

Fig.4.8 de�nes the typing rule for handlers. The judgement Δ; Γ ` � : �⇒� � says that if Γ is well-kinded
under Δ, and Δ ` �⇒� � : Handler, then handler � can be assigned type �⇒� � under Δ; Γ.

A handler for the e�ect � takes an input computation of type � ! (�;') and produces an output
computation of type � !' – thus mapping the type of the return value from � to �, and discharging �
from the e�ect row (�;'). (This implies the input computation may only perform operations in (�;')
and the output computation may only perform operations in '.)

The return clause {return G → "} is typed by the �rst premise: given a value of type � bound
to G , the returned computation " must be of type � !'. In the second premise, an operation clause
{op8 G8 :8 → "8} is provided for each op8 : �8 → �8 ∈ �: given the operation’s argument G8 : �8 , and a
continuation :8 : �8 → � !' that is parameterised by the operation’s result, the returned computation
"8 must again be of type � !'.

Remark 1 (Closed handlers): We prevent handlers from containing any conditionable variables, by
requiring each clause to return a computation " that is well-typed under the empty model type
environment Ω = Y.

4.3.6 Opening and closing row types

To make computations easy to reuse in di�erent contexts, the user can de�ne them as polymorphic in
the e�ects they do not use. To avoid having to specify e�ect rows as being explicitly polymorphic, we
introduce two type rules in Fig. 4.9.

The �rst rule opens a (possibly empty) closed e�ect row with a polymorphic row variable, and the
second simpli�es open e�ect rows. Although close e�ect row can lead to some programs becoming
ill-typed by assigning a less general type to computations, open e�ect row can always be applied to
recover the original most general type; thus, even if types become simpli�ed by close e�ect row, the set
of typeable programs remains unchanged [Leijen 2017].

Δ; Γ ` d̃ : Ω Model environment d̃ has type Ω under a kind and type environment Δ; Γ

model env (non-empty)
Δ; Γ ` d̃ : Ω Δ; Γ; Y ` + : List �

Δ; Γ ` d̃ · (G̃ : +) : Ω · (G̃ : �)

model env (empty)

Δ; Γ ` Y : Y

Figure 4.4: Type rules: model environments

46

Δ; Γ;Ω ` + : � Value + has type � under a kind, type, and model type environment Δ; Γ;Ω

var
G : � ∈ Γ

Δ; Γ;Ω ` G : �

function
Δ; Γ · (G : �);Ω ` " : �

Δ; Γ;Ω ` _G : �." : �→ �

type abstraction
Δ · (U :); Γ;Ω ` " : �

Δ; Γ;Ω ` ΛU : ." : ∀U : . �
just

Δ; Γ;Ω ` + : �
Δ; Γ;Ω ` Just + : Maybe �

nothing

Δ; Γ;Ω ` Nothing : Maybe �

cons
Δ; Γ;Ω1 ` +1 : � Δ; Γ;Ω2 ` +2 : List �

Δ; Γ;Ω1] Ω2 ` (+1 :: +2) : List �
nil

Δ; Γ;Ω ` Nil : List �

Figure 4.5: Type rules: values

q : �→ � ∈ Φ Primitive distribution q has parameters of type � and generates values of type �

normal : Double × Double → Double ∈ Φ
bernoulli : Double → Bool ∈ Φ
discrete� : List � × Double → � ∈ Φ

...

op : �→ � ∈ � Operation op has argument type � and output type �, and belongs to e�ect �

distq : � × Maybe � → � ∈ Dist
observeq : � × � → � ∈ Observe
sampleq : � → � ∈ Sample

Figure 4.6: Type signatures: primitive distributions and core operations

Δ; Γ;Ω ` " : � Computation" has type � under kind, type, and model type environment Δ; Γ;Ω

return
Δ; Γ;Ω ` + : �

Δ; Γ;Ω ` return + : � !'

application
Δ; Γ;Ω ` +1 : �→ � Δ; Γ;Ω′ ` +2 : �

Δ; Γ;Ω] Ω′ ` +1+2 : �

type application
Δ; Γ;Ω ` + : ∀U : . � Δ `) :

Δ; Γ;Ω ` + [)] : � [U ↦→)]

operation call
op : �→ � ∈ � Δ; Γ;Ω ` + : �

Δ; Γ;Ω ` op + : � ! (�;')

distribution call
q : �→ � ∈ Φ Δ; Γ;Ω ` + : �

Δ; Γ;Ω ` q + : � ! (Dist;')

let-bind
Δ; Γ;Ω ` " : � !' Δ; Γ · (G : �);Ω′ ` # : � !'

Δ; Γ;Ω] Ω′ ` let G ← " in # : � !'

let-bind (∼)
q : �→ � ∈ Φ Δ; Γ;Ω ` + : � Δ; Γ · (G : �);Ω′ ` " : � ! (Dist;')

Δ; Γ;Ω] Ω′ · (G̃ : �) ` let G̃ ∼ q + in " : � ! (Dist;')

handle
Δ; Γ ` � : � ! (�;') ⇒� � !' Δ; Γ;Ω ` " : � ! (�;')

Δ; Γ;Ω ` with � handle " : � !'

Figure 4.7: Type rules: computations

47

Δ; Γ ` � : �⇒� � Handler � for e�ect � has type �⇒� � under kind and type environment Δ; Γ

handler
Δ; Γ · (G : �); Y ` " : � !'

[
Δ; Γ · (G8 : �8) · (:8 : �8 → � !'); Y ` "8 : � !'

]
∀op8 :�8→�8 ∈ �

Δ; Γ ` {return G → "}] {op8 G8 :8 → "8 }op8 ∈� : � ! (�;') ⇒� � !'

Figure 4.8: Type rules: handler

open e�ect row
Δ; Γ;Ω ` " : � ! (�1; ...;�= ; Y)

Δ · (A : E�ectRow); Γ;Ω ` " : � ! (�1; ...;�= ; A)

close e�ect row
Δ · (A : E�ectRow); Γ;Ω ` " : � ! (�1; ...;�= ; A)

Δ; Γ;Ω ` " : � ! (�1; ...;�= ; Y)

Figure 4.9: Opening and closing e�ect rows

4.4 Semantics

Fig. 4.10 de�nes the semantics for our language using a small-step operational style in the relation
d̃, " { d̃ ′, " ′. This relation states that d̃ , " reduces to d̃ ′, " ′ in a single step, for any Δ; Γ ` d̃ : Ω and
Δ; Γ;Ω ` " : � where Γ and Ω are well-kinded in Δ.

The semantics uses an evaluation context E whose grammar allows us to focus on reducible sub-
terms in let-bindings (let G ← E in ") and handle terms (with � handle E). It does this by letting a
reducible sub-term " be hoisted up through a program to yield the form E["], where the lift rule
(L
{) can then apply a top-level reduction ({) to the nested " .

The rules app, ty-app, and let-bind (ret) use standard beta reduction to replace the bound variable
of a computation with an argument.

De�nition 2 (!): For any closed value of type List �, the function (!) returns a pair of closed values of
type Maybe � × List �, and is de�ned by the equations below. (A value + is closed when Y; Y; Y ` + : �
for some type �.)

(+1 :: +2) ! = (Just +1,+2) Nil ! = (Nothing, Nil).

The rule let-bind (∼) shows how let G̃ ∼ q + in " reduces to a regular let-binding of the form
let G ← distq (+ ,+ ′) in " – by calling the operation distq corresponding to q , and then binding the
result to regular variable G whose name corresponds to G̃ . The argument + ′ is the current observed
value of G̃ in the model environment d̃ · (G̃ : *), i.e. the head element (if it exists) of the list * ; this is
safely looked up using (!) in De�nition (!), and removed from that list in the output environment.

The rule dist call, for when q + is not bound to a conditionable variable, reduces to the operation
call distq (+ , Nothing) where Nothing indicates no observed value to condition against.

The rule handle (ret) reduces with � handle (return +) by beta reducing the return clause
{return G → "} of � , and then continuing with the variable assignment G ↦→ + in " . 1

Finally, the rule handle (op) shows how a program containing an operation call, E[op +], is
evaluated by a corresponding handler clause {op G : → "}. It does this by returning the clause body" ,

1The terms (_G : �.")+ and let G ← return + in " can be subsumed by with {return G → "} handle (return +),
but are retained in the language for convenience.

48

d̃, " { d̃ ′, " ′ Model environment d̃ and computation" reduce to d̃ ′ and" ′ in one step

app d̃, (_G : �.") + { d̃, " [G ↦→ +]
ty-app d̃, (ΛU : .") [)] { d̃, " [U ↦→)]
let-bind (ret) d̃, let G ← return + in " { d̃, " [G ↦→ +]
let-bind (∼) d̃ · (G̃ : *), let G̃ ∼ q + in " { d̃ · (G̃ : * ′), let G ← distq (+ ,+ ′) in "

where (+ ′,* ′) = * !
dist call d̃, q + { d̃, distq (+ , Nothing)
handle (ret) d̃, with � handle (return +) { d̃, " [G ↦→ +]

if {return G → "} ∈ �
handle (op) d̃, with � handle E[op +] { d̃, " [G ↦→ + , : ↦→ _~. with � handle E[return ~]]

if {op G : → "} ∈ �
and op ∉ Handled(E)

Handled([]) = ∅
Handled(let G ← E in ") = Handled(E)

Handled(with � handle E) = Handled(E) ∪ dom(�)

d̃, E["] l
{ d̃ ′, E[" ′] Model environment d̃ and evaluation context E["] reduce to d̃ ′ and E[" ′] in one step

lift d̃, E["] l
{ d̃ ′, E[" ′] if d̃, " { d̃ ′, " ′

Evaluation context E ::= [·] | let G ← E in " | with � handle E

Figure 4.10: Small-step operational semantics

where the operation’s argument + is bound to G , and its continuation _~. with � handle E[return ~]
to : . Here, : continues by recursively handling the containing program E, thus describing the semantics
of a deep handler [Hillerström and Lindley 2018], where the original operation is replaced by its result
bound to ~. The side condition ‘if op ∉ Handled(E)’ enforces that each operation can only be handled
by its nearest (appropriate) enclosing handler, with Handled(E) being the set of operations in E that
already have a handler in E.

4.4.1 Formal properties

The following formal properties hold for these semantics, assuming no usage of the typing rules close

e�ect row and close e�ect row from Fig. 4.9.

Theorem 1 (Determinism): Suppose d̃ and " are well-typed.
If d̃, " L

{ d̃1, "1 and d̃, " L
{ d̃2, "2 then d̃1 = d̃2 and "1 = "2.

De�nition 3 (Redex): redex(") if and only if ∃" ′. " { " ′.

De�nition 4 (Decomposition): " ∼ E[#] if and only if " = E[#] and redex(#).

49

" ∼ E[#] Computation" decomposes into evaluation context E[#].

redex(")
" ∼ ["]

" ∼ E[#]
let G ← " in " ′ ∼ let G ← E[#] in " ′

" ∼ E[#]
with � handle " ∼ with � handle E[#]

Lemma 1 (Unique decomposition): Suppose " is well-typed.
If " ∼ E[#] and " ∼ E ′[# ′], then E = E ′ and # = # ′.

Theorem (Determinism) guarantees that reduction (L
{) on a well-typed computation and model environ-

ment is deterministic. In real-world applications such as simulation or inference, determinism may not
generally be true as the user may introduce stochastic behaviour when implementing an e�ect handler
for Sample. This calculus, primarily for translating multimodal models to probabilistic programs that
sample and observe, does not have/require a notion of randomness and so is deterministic. However, it
can su�ciently describe a probabilistic model as a deterministic system parameterised by a sequence
of stochastic inputs (illustrated in Section 4.5), which is sometimes called a trace-based semantics for
PPLs [Kozen 1979; Borgström et al. 2016; Dahlqvist et al. 2023].

Proof of Determinism. The proof in Appendix B.1 proceeds by: (i) proving the Unique decomposi-
tion property of the relation (∼) in De�nition (Decomposition), which describes how a computation can
be decomposed into an evaluation context with a hole plugged by a Redex, and then (ii) using the fact
that there is only single top-level reduction rule ({) per redex. �

Theorem 2 (Progress): Suppose d̃ and " are well-typed such that Y; Y ` d̃ : Ω and Y; Y;Ω ` " : � .
Either " is in canonical form, or ∃d̃ ′, " ′. d̃, " L

{ d̃ ′, " ′.

De�nition 5 (Canonical form): The canonical computations are return + and E[op+] where
op ∉ Handled(E).

Theorem (Progress) guarantees that if reduction (L
{) cannot be applied to a well-typed computation

and model environment, the computation must be in Canonical form; that is, it returns a value or gets
stuck on an unhandled operation.

Proof of Progress. The proof in Appendix B.2 is by induction on the type derivations of computa-
tions. �

Theorem 3 (Type preservation): Suppose Y; Y ` d̃ : Ω and Y; Y;Ω ` " : � .
If d̃, " L

{ d̃ ′, " ′, then Y; Y ` d̃ ′ : Ω and Y; Y;Ω ` " ′ : � .

Lemma 2 (Value substitution): Suppose Y; (G : �);Ω ` " : � .
If Y; Y;Ω′ ` + : � then Y; Y;Ω] Ω′ ` " [G ↦→ +] : � .

Lemma 3 (Type substitution): Suppose (U :); Y;Ω ` " : � .
If Y `) : then Y; Y;Ω ` " [U ↦→)] : � .

Theorem 4 (Type preservation of{): Suppose Y; Y; ` d̃ : Ω and Y; Y;Ω ` " : � .
If d̃, " { d̃ ′, " ′, then Y; Y; ` d̃ ′ : Ω and Y; Y;Ω ` " ′ : � .

Lemma 4 (Context invariance): Suppose Y; Y;Ω] Ω1 ` E["1] : � and Y; Y;Ω1 ` "1 : � .
If Y; Y;Ω2 ` "2 : � then Y; Y;Ω] Ω2 ` E["2] : � .

50

Theorem (Type preservation) guarantees that reduction (L
{) on a well-typed computation and model

environment produces a computation and environment of the same type.

Proof of Type preservation. The proof in Appendix B.3 proceeds by: (i) proving Type preservation
of { for d̃, " , by induction on the reduction rules and appealing to Value substitution and Type
substitution, and then (ii) using Context invariance to lift to type preservation of L

{ for d̃, E["]. �

Theorem 5 (Type soundness): Suppose Y; Y ` d̃ : Ω and Y; Y;Ω ` " : � .
Then either reduction of " diverges, or there exists Y; Y;Ω ` # : � such that d̃, " L

{ ∗d̃ ′, # 6 L{, and #
is in canonical form.

Theorem (Type soundness) guarantees that iterative reduction (L
{ ∗) over a well-typed computation

and model environment is both progressing (except when in canonical form) and type-preserving.

Proof of Type soundness. By proof of Theorem (Progress) we have that either: (i) the computation
is already in canonical form where type preservation trivially holds, or (ii) the computation can be
reduced one step in d̃, "

L
{ d̃ ′, # where type preservation holds by Theorem (Type preservation).

In case (ii), if reduction of " does not diverge, then by induction of Theorem (Progress) we have
that ∃# .d̃, " L

{
∗
d̃ ′, # where # is in canonical form, and type-preservation holds by induction of

Theorem (Type preservation) on the number of reduction steps taken. �

4.5 Example: linear regression

To illustrate a probabilistic program in this calculus, we assume the existence of the term match as for
pattern-matching on values of type Maybe � and List �, and the operator draw (c.f. Section 3.1) for
drawing a sample from a primitive distribution given a random value r ∈ [0, 1]. These constructs are
given fully in the appendix in Fig. B.1.

Fig. 4.11 then implements linear regression as a multimodal model (c.f. Section 1.1), along with the
handlers for multimodal distributions (c.f. Section 3.3.2) and for observing and sampling used by model
simulation (c.f. Section 3.3.4); each of their type signatures make implicit use of the open e�ect row

rule for extending closed e�ect rows Y by the row variable A . The handler defaultSample is deterministic,
using a user-provided list of real numbers r ∈ [0, 1] to draw samples with; to thread the list as an internal
state, each of its handler clauses returns a function from that list to the rest of the recursively handled
program. The top-level program simLinRegr then applies the three handlers to the linear regression
model, and uses the returned function f to simulate the model under a random trace.

51

linRegr : Double→ Double ! (Dist; Y)
linRegr = _(x : Double).

let m̃u ∼ normal (0.0, 2.0) in
let c̃ ∼ normal (0.0, 3.0) in
let ỹ ∼ normal (mu ∗ x + c, 1.0)
in y

handleMulDist : ∀(U : Type). U ! (Dist; Observe; Sample; Y) ⇒ Dist U ! (Observe; Sample; Y)
handleMulDist = Λ(U : Type).

{ return G
→ return G }

] { distq (argsq , obs_val) ^
→ match obs_val as { Nothing→ let x← sampleq argsq in ^ x,

Just y → let x← observeq (argsq , y) in ^ x } }

defaultObserve : ∀(U : Type). U ! (Observe; Y) ⇒ Observe U ! Y
defaultObserve = Λ(U : Type).

{ return G
→ return G }

] { observeq (argsq , y) ^
→ ^ y }

defaultSample : ∀(U : Type). U ! (Sample; Y) ⇒ Sample (List Double→ (U ! Y)) ! Y
defaultSample = Λ(U : Type).

{ return G
→ return (_(rss : List Double). return G) }

] { sampleq argsq ^
→ return (_(rss : List Double).

match rss as { (r::rs)→ let y← return (draw (q argsq) r)
^ ′← ^ y

in (^ ′ rs)),
- - default to r = 0.0 Nil → let y← return (draw (q argsq) 0.0)

^ ′← ^ y
in (^ ′ Nil) } }

simLinRegr : Double ! Y
simLinRegr = let f : List Double→ (Double ! Y)

f ← with (defaultSample Double) handle
(with (defaultObserve Double) handle

(with (handleMulDist Double) handle (linRegr 5.0)))
in f (0.36 :: 0.28 :: 0.76 :: Nil)

Figure 4.11: Linear regression and handlers for model simulation.

52

4.6 Related work

4.6.1 Calculi for algebraic e�ect oriented programming

The original calculus for algebraic e�ects with handlers, by Plotkin and Pretnar [2009], was built on top
of Levy [1999]’s paradigm of call-by-push-value which distinguishes computations " from values + . 2

This has since given rise to a range of approaches for formalising languages based on algebraic e�ects,
two of which our calculus primarily draws from.

Kammar et al. [2013] present a type-and-e�ect system for a higher-order calculus of e�ect handlers
called _e�. Like us (Fig. 4.1), they denote e�ects as sets of type-annotated operations, {op : �→ �} ⊆ �,
and handlers as (containing) sets of operation clauses, {opG : → "} ⊂ � . In contrast to us, they
annotate the types of their handlers (� �⇒�′ �) by both the input and output sets of unhandled
operations i.e. e�ect signatures. They also introduce the �rst operational semantics of algebraic e�ects
with e�ect handlers, leading to later simpler variants (next) that our semantics more closely resembles.

Hillerström and Lindley [2016] describe a calculus called _de� that is novel in structuring e�ect
signatures as polymorphic rows of e�ects, following ideas of row-based e�ect types for databases [Lindley
and Cheney 2012]. They, and others [Leijen 2017], have recognised row polymorphism as a natural
abstraction for modelling extensibility of e�ects at the type-level. They thus use a kind system that, in
addition to the standard Type kind for value types, includes richer kinds for rows and e�ects (as well
as computations and handlers). Our kind system (Fig. 4.3) is a minimal version of _de�, e.g. excluding
“presence kinds” [Rémy 1994] for denoting whether an e�ect is present or absent in a row, and our type
language is also close. They also present a small-step operational semantics for deep e�ect handlers,
which we have found useful (Fig. 4.10) for expressing our evaluation contexts E, the notion of “nearest
enclosing handler” in Handled(E), and the reduction of with � handle " terms.

There are some other design considerations which calculi based on algebraic e�ects and e�ect
handlers can make. One detail is the �avour of e�ect handler. We use deep handlers which recursively
attempt to handle all operation calls in the program (Fig. 4.10). Shallow handlers instead let the pro-
grammer choose whether to resume an operation’s continuation under the same handler or a di�erent
one. The deep approach is thus de�ned as a fold over a computation tree, which is important for the
categorical semantics of handlers as “folds over algebras” [Plotkin and Pretnar 2013], whereas shallow
handlers (†) are de�ned as case-splits which do only one level of the fold [Hillerström and Lindley 2018]:

handle† (op) with � handle† E[op +] { " [G ↦→ + , : ↦→ _~. E[return ~]]

if {op G : → "} ∈ �

and op ∉ Handled(E)

Another design choice is how operations are called. We use indirect style operation calls [Bauer and
Pretnar 2013], op + , where the programmer simply provides an argument + to the operation (Fig. 4.7).
The alternative is direct style [Kammar et al. 2013], ôp + (_~."), which allows the programmer to
manually provide a continuation (it is simple to desugar op + into this form). Because direct style
provides immediate access to the operation’s continuation, programs that contain these can be reduced

2As does Levy et al. [2003]’s paradigm of �ne-grain call-by-value, which we used. One di�erence is that call-by-push-value
considers functions as computations rather than values.

53

without a handler in the current context:

lift (ôp) E[ôp + (_~.")] { ôp + (_~. E["])

There are also di�erent ways of formalising how operations are relayed to their suitable handlers.
Our use of evaluation contexts (Fig. 4.10), in the reduction rule for with � handle E[op +], allows
operations to be automatically relayed into the scope of the nearest appropriate handler � [Hillerström
and Lindley 2016]. A semantics without an evaluation context requires an extra rule that speci�cally
relays direct style operation calls ôp + : , which lets handlers apply themselves to the inside of exposed
continuation : if they cannot handle ôp [Pretnar 2015]:

handle (relay ôp) with � handle ôp + (_~.") { ôp + (_~. with � handle ")

if ôp ∉ dom(�)

Finally, there are also calculi with �rst-class support for operations and handlers as values. In
E� [Bauer and Pretnar 2015], deep handlers and unsaturated operation calls (i.e. op without an argument)
are considered as regular values that produce computations, similarly to functions. In core E� [Bauer
and Pretnar 2013], handlers are values but unsaturated operation calls do not exist. The functional
language Frank [Lindley, McBride, et al. 2017] is based solely on shallow e�ect handlers where there is
no primitive notion of a function, but rather, a function is a special case of a handler.

4.6.2 Formalising row types for model environments

Our use of polymorphic rows was mainly for expressing extensible e�ect signatures (Fig. 4.9) which
is key for our modular treatment of programs annotated with e�ect types; however, it is also easy
to extend the calculus to include the usual row-typed terms such as records (products) and variants
(coproducts) [Leijen 2005]. We additionally explored row polymorphism for model environments d̃ ,
using row types to represent them as records that map conditionable variable names to values. This
was successful in describing an embedding of multimodal models inside a generic host language with
row types, but introduced a lot of notational overhead and intricate type rules; in particular, when
viewing models as computations indexed by an e�ect row, that in turn, contains an e�ect indexed by
a row of conditionable variables. Rather, we found that treating model environments as part of the
metalanguage (Fig. 4.4) resulted in a more minimal, workable calculus for multimodal models. Closely
related to the idea of row types for random variables is work by Lew et al. [2019]; they formalise a
trace type system that assigns types to the named random choices made by models, thus tracking the
space of possible execution traces, and then prototype this in Haskell using a package for emulating
row types. We suspect this could be used to characterise multimodal model execution under a �xed
model environment.

54

Part II

E�ects and E�ect Handlers for
Probabilistic Inference

55

CHAPTER5
A Framework for Programmable Inference

Chapter 3 used algebraic e�ects to support the idea of a multimodal model, which when conditioned on,
specialised into a concrete probabilistic Model that samples and observes (Fig. 3.6). The de�nition of
Model is summarised in Fig. 5.1.

type Model a = Comp [Observe, Sample, IO] a

data Sample a where data Observe a where
Sample :: Dist d a ⇒ d→ Sample a Observe :: Dist d a ⇒ d→ a→ Observe a

class Dist d a | d → a where type LogP = Double
draw :: d → Double→ a
logProb :: d → a→ LogP

Figure 5.1: Models as computations that sample and observe

The insight of this chapter, is that algebraic e�ects also o�er a powerful framework for programmable

inference over these models, as alluded to in Section 2.2. We outline our approach for this next.

5.1 Inference patterns

Programmable inference is the ability to program new inference algorithms out of reusable parts of
existing ones. Our key insight is that algebraic e�ects seem to be a natural �t for two kinds of extensibility
central to programmable inference.

First, by representing models as computations in terms of reinterpretable Sample and Observe opera-
tions (Fig.5.1), we allow them to be assigned semantics tailored to speci�c inference algorithms. For exam-
ple, we can instrument models to record the sample traces needed for Metropolis-Hastings (Section 5.2),
or arrange for models to execute stepwise rather than to completion, for particle �lters (Section 5.3).

Second, we can take a similar view of the algorithms themselves. By representing the key actions of
each broad approach to inference as reinterpretable “inference operations” — for example Propose and
Accept, in the case of Metropolis-Hastings (Section 2.2) — we can turn these operations into extension
points, able to be given di�erent meanings by di�erent members of the same broad algorithmic family.
Deriving a concrete inference algorithm is then a matter of supplying appropriate interpreters for
the model and for the inference operations themselves. Moreover these extension points advertise to
non-experts the key steps in the algorithms.

57

Inference Pattern
Inference skeleton
Abstract inference algorithm. Given a model and a
model interpreter, yields a computation expressed in
terms of inference operations.

Inference operations
Operations speci�c to inference pattern, such as pro-
posal or resampling.

Model interpreter type
Pattern-speci�c type of model interpreters. A model
interpreter assigns meaning to Sample and Observe,
and executes a model to an IO action.

Auxiliary de�nitions
Additional de�nitions supporting the pattern or for
reuse by concrete instances.

Pattern Instance
Concrete algorithm
Instantiates the inference skeleton with a model inter-
preter, and post-composes with an inference handler
to yield a concrete inference algorithm.

Inference handler
Assigns a meaning to each inference operation.

Model interpreter
Model interpreter containing some behaviours speci�c
to a concrete algorithm, and others provided by the
pattern.

Auxiliary de�nitions
Additional de�nitions supporting the above.

Figure 5.2: Informal structure of inference patterns (left) and pattern instances (right)

As well as o�ering a modular and programmable approach to algorithm design, this perspective also
provides a useful conceptual framework for understanding inference. For example, Metropolis-Hastings
and particle �lters might look quite di�erent algorithmically, but our approach provides a uniform way of
looking at them: each can be understood as an abstract algorithm, parameterised by a model interpreter,
and expressed using abstract operations whose interpretation is deferred to concrete implementations.
This informal organisational structure, shown on the left-hand side of Fig. 5.2, is what we earlier called
(Section 2.2) an inference pattern; a library designer developing their own abstract inference algorithms
using our approach would most likely follow this high-level template. Below �eshes out the idea of an
inference pattern a little.

5.1.1 Inference patterns

The core of an inference pattern (Fig.5.2, left) is an abstract algorithm expressing an inference procedure.
Taking inspiration from the parallelism literature [Darlington et al. 1995], we call this an inference

skeleton. Inference skeletons depend on algebraic e�ects in two essential ways. First, each skeleton is
parameterised by a model interpreter, giving concrete algorithms control over model execution; second,
the skeleton is expressed in terms of abstract inference operations unique to the pattern, which act
as additional extension points where concrete algorithms can plug in speci�c behaviour. The model
interpreter has a model interpreter type, whose exact form depends on the pattern, but is roughly

type ModelExec a b = Model a→ IO b

and is used by the skeleton to fully interpret the Model (Fig. 5.1) into an IO action on each iteration. Each
pattern may also provide one or more auxiliary de�nitions, including reusable inference components
that make it easier to de�ne instances.

Having the inference skeleton execute the model all the way to an IO action allows the model and
inference algorithm to have distinct e�ect signatures. Assuming inference operations with concrete
type InfE�ect, a skeleton will have a type resembling

infSkeleton :: (InfE�ect ∈ fs, IO ∈ fs) ⇒ ModelExec a b→ Model a→ Comp fs b

58

where fs contains only the e�ects speci�c to the algorithm. Although it is possible to unify the e�ect
signatures of the model and inference algorithm under the same computation, we �nd that keeping
them distinct allows for a more modular design, whilst also being more performant (Section 5.5).

5.1.2 Pattern instances

A pattern instance (Fig. 5.2, right) provides a concrete algorithm. It instantiates an inference skeleton
with a speci�c model interpreter, determining the speci�c model execution semantics to be used, and
then composes the result with an inference handler providing a speci�c interpretation of the inference
operations. Pattern instances may also have auxiliary de�nitions.

We use this informal template to present three inference patterns: Metropolis-Hastings (Section 5.2),
Particle Filter (Section 5.3), and Guided Optimisation (Section 5.4), along with concrete pattern instances
illustrating the compositionality and programmability of the approach.

5.2 Inference pattern: Metropolis-Hastings

Metropolis-Hastings algorithms [Beichl and Sullivan 2000], introduced brie�y in Section 2.2, repeatedly
draw samples from a chosen “proposal” distribution. By using an accept/reject scheme that determines
whether to accept a new proposal and thus move to a new con�guration, or to reject it and remain in
the current con�guration, the algorithm controls how samples are generated. Under certain standard
assumptions, then, these samples yield a Markov chain that converges to the target posterior. (Here
we only consider the case where the proposal distribution is the actual model we are performing
inference over.)

The key operations of the algorithm are proposing and accepting/rejecting proposals. To expose them
as extension points, we represent them by the inference e�ect type Propose w in Fig. 5.3. The parameter
w is a particular representation of probability, or weight; the datatype Trace represents proposals. A trace
�xes a subset of the stochastic choices made by a model, which is key to how the algorithm controls
where samples are drawn from.

The inference skeleton mh n g0 executes n abstract iterations of Metropolis-Hastings, iterating mhStep

to generate a Markov chain of length n from a (typically empty) starting trace g0. The head of the Markov
chain (x, (F , g)) represents the current con�guration; x is the sample last drawn from the model, g is the
trace for that model run, and F is an associated weight of type w, representing the probability density at
g . First, mhStep calls Propose g to generate a new proposal g† derived from g . Then, the model interpreter
exec is used to run the Model, using the information in g† to �x stochastic choices, and resulting in a
new trace g ′ and associated weight F ′. The new trace contains at least as much information as g†, but
additionally stores any choices not determined by g†. The result of exec is an IO computation, which
is inserted into the computation tree using call. Finally, mhStep calls Accept to determine whether the
new con�guration is by some (unspeci�ed) measure “better” than the current one, returning it if so, and
otherwise retaining the current.

To �x stochastic choices, a trace must associate to each Sample operation enough information
to determinise that sample. This can be achieved in various ways, but here we assume that Sample

(and Observe) nodes are now identi�ed by addresses U [Tolpin et al. 2016] of abstract type Addr, either

59

Inference Pattern: Metropolis-Hastings
Inference skeleton

mh :: (Propose w ∈ fs, IO ∈ fs)
⇒ Int→ Trace→ ModelExec w a→ Model a→ Comp fs [(a, (w, Trace))]

mh n g0 exec model = do
let mhStep i chain

| i < n = do let (x , (F , g)) = head chain
g† ← call (Propose g)
(x′, (F ′, g ′)) ← call (exec g† model)
nodei+1 ← call (Accept (x, (F , g)) (x′, (F ′, g ′)))
mhStep (i + 1) (nodei+1 : chain)

| otherwise = return chain
node0← call (exec g0 model) −− initialise first node
mhStep 0 [node0]

Inference operations

data Propose w a where
Propose :: Trace → Propose w Trace
Accept :: (a, (w, Trace)) → (a, (w, Trace)) → Propose w (a, (w, Trace))

Model interpreter type

type ModelExec w a = Trace → Model a→ IO (a, (w, Trace))

Auxiliary definitions

type Trace = Map Addr Double

reuseTrace :: IO ∈ es⇒ Trace→ Handler Sample es a (a, Trace)
reuseTrace g = handleWith g (_g ′ x→ Val (x, g ′)) hop where

hop g† (Sample d U) k = do r← call random
let (r ′, g ′) = findOrInsert U r g†

k g ′ (draw d r′)

random :: IO Double

Figure 5.3: Inference Pattern: Metropolis-Hastings

generated behind the scenes or manually assigned by the user. (See related work, Section 5.6.3.)
A trace is then a map from addresses to random values r ∈ [0, 1] providing the source of randomness

for drawing the sample associated with a given address. The Sample handler reuseTrace g is used for
executing a model under a trace g : it generates the draw using the stored random value for U if there is
one, and otherwise generates a fresh value r which is recorded in an updated trace. Since draw is pure,
executing a model under a �xed (and su�ciently large) trace is deterministic, allowing the generative
behaviour of the model to be controlled by providing it with speci�c traces. The reuseTrace handler is thus
a reusable “inference component” which can be used by concrete instances of Metropolis-Hastings, of
which we now present two examples: Independence Metropolis (Section5.2.1) and Single-Site Metropolis-
Hastings (Section 5.2.2). Our third example, Particle Metropolis-Hastings, will be de�ned in Section 5.3.3
after we have introduced Particle Filter.

60

Pattern Instance: Independence Metropolis
Concrete algorithm

im :: Int → Model a→ IO [(a, (LogP, Trace))]
im n = runImpure ◦ handleProposeim ◦ mh n empty execModelim

Inference handler

handleProposeim :: IO ∈ fs⇒ Handler (Propose LogP) fs a a
handleProposeim = handle Val hop where

hop (Propose g) k = do g ′← mapM (const (call random)) g
k g ′

hop (Accept xFg xFg ′) k = do let (F ,F ′) = ((fst ◦ snd) xFg , (fst ◦ snd) xFg ′)
ratio = F ′ −F

u ← call random
k (if exp ratio ≥ u then xFg else xFg ′)

Model interpreter

execModelim :: ModelExec LogP a
execModelim g = rassoc ◦ runImpure ◦ reuseTrace g ◦ likelihood

Auxiliary definitions

likelihood :: Handler Observe es a (a , LogP)
likelihood = handleWith 0 (_F x→ Val (x,F)) hop where

hopF (Observe d y U) k = k (F + logProb d y) y

rassoc = fmap (_((x,F), g)→ (x, (F , g)))

Figure 5.4: Independence Metropolis as an instance of Metropolis-Hastings

5.2.1 Pattern instance: Independence Metropolis

Fig.5.4 de�nes a simple Metropolis-Hastings variant called Independence Metropolis [Holden et al. 2009],
where each iteration proposes an entirely new set of samples, and determines whether the proposal is
accepted by comparing its likelihood with the previous iteration. This specialises the weight type w in
Propose w and ModelExec w a to the type LogP for log likelihoods.

The handler handleProposeim interprets Propose by mapping new random values over the entire trace.
(One can equivalently return the empty trace, but our particular approach becomes useful for Particle
Metropolis-Hastings in Section 5.3.3.) To interpret Accept, we compute the likelihood ratio between the
current and previous iteration, and accept only if greater than a random point in the interval [0, 1].

For model execution, the likelihood handler interprets Observe, by summing the log likelihood F
over all observations with 0 as the starting value. The full Independence Metropolis algorithm is then
derivable by providing mh with a number of iterations n, the empty map as the initial trace, and the
model interpreter, then composing the result with handleProposeim and runImpure to yield a Markov
chain of n proposals for a given model.

5.2.2 Pattern instance: Single-Site Metropolis-Hastings

The rate of accepted proposals in Independence Metropolis su�ers as more variables are sampled from:
because each proposal generates an entirely new trace, achieving a high likelihood means sampling an
entire set of likely proposals. Fig.5.5 de�nes Single-Site Metropolis-Hastings [Wingate, Stuhlmueller, et al.

61

Pattern Instance: Single-Site Metropolis-Hastings
Concrete algorithm

ssmh :: Int → Trace→ Model a→ IO [(a, (LPTrace, Trace))]
ssmh n g = runImpure ◦ handleProposessmh ◦ mh n g execModelssmh

Inference handler

handleProposessmh :: IO ∈ fs⇒ Handler (Propose LPTrace) fs a a
handleProposessmh = handleWith U0 (const Val) hop where

hop _ (Propose g) k = do U ← call (randomFrom (keys g))
r ← call random
k U (insert U r g)

hop U (Accept (x, (F , g)) (x′, (F ′, g ′))) k
= do let ratio = (sum ◦ elems ◦ delete U) (intersectionWith (−) F ′ F)

+ log (size g) − log (size g ′)
u ← call random
k U (if exp ratio ≥ u then (x′, (F ′, intersection g ′ F ′))

else (x, (F , g)))

Model interpreter

execModelssmh :: ModelExec LPTrace a
execModelssmh g = rassoc ◦ runImpure ◦ reuseTrace g ◦ defaultObserve ◦ traceLP

Auxiliary definitions

type LPTrace = Map Addr LogP

traceLP :: (Observe ∈ es, Sample ∈ es)⇒ Comp es a→ Comp es (a, LPTrace)
traceLP = loop empty where

loop F (Val x) = Val (x , F)
loop F (Op op k)

| Just (Observe d y U)← prj op = Op op (_x→ loop (insert U (logProb d x) F) (k x))
| Just (Sample d U) ← prj op = Op op (_x→ loop (insert U (logProb d x) F) (k x))
| otherwise = Op op (loop F ◦ k)

randomFrom :: [a] → IO a

Figure 5.5: Single-Site Metropolis-Hastings as an instance of Metropolis-Hastings

2011], which uses an alternative semantics for model execution and inference: proposing just one sample
per iteration, and otherwise reusing samples from the previous iteration. The acceptance/rejection
scheme is also slightly di�erent, comparing individual probabilities of Sample and Observe operations
with respect to the proposed sample. This specialises the weight type w of Propose w to LPTrace, mapping
addresses to their log probabilities.

The handler handleProposessmh threads an address U , identifying the sample currently being proposed.
(The initial value of this argument is unused, so we supply an arbitrary value U0.) For Propose, we use
a helper randomFrom to select a new address U uniformly from the keys of trace g , and then return g
updated with a new random value for U . For Accept, the acceptance ratio between F ′ and F is computed
for corresponding addresses by intersectionWith (−), using delete U to exclude the current proposal site,
and also accounting for the ratio of sizes between the two trace. 1 If the new trace g ′ is accepted then
intersection g ′ F ′ clears all unused samples from it, given thatF ′ will only ever store addresses relevant

1By using intersectionWith (-), we assume that each execution of the model encounters the same (addresses of) Observe
operations, which is a common assumption in probabilistic programming languages.

62

to the model’s execution, as described next.
The semantics for model execution di�ers only slightly from Independence Metropolis. Instead of

summing the log probabilities of Observe operations, execModelssmh records the log probabilities of both
Observe and Sample operations into the map F of type LPTrace, via the handler traceLP shown in Fig. 5.5
(written using Haskell’s pattern guard syntax). This deviates from the normal handler pattern, instead
matching on the result of prj op from Section 2.3.1 to intercept operations of di�erent e�ect types, and
leaving them unhandled. Here we simply modify the continuation k to store the log probability of the
value returned by the operation. The case of prj returning Nothing in otherwise follows the same pattern
as decomp returning Le� in Section 2.3.3.

All conditioning side-e�ects are in fact taken care of by traceLP, so the residual Observe operations
are handled by defaultObserve (Fig. 3.8) to simply return the observed values, and the Sample operations
by reuseTrace as before. The interpreted model has type IO (a, (LPTrace, Trace)), containing the �nal
log probability and execution traces. We now have the necessary components to derive Single-Site
Metropolis-Hastings from the mh pattern.

5.3 Inference pattern: Particle Filter

Particle �lters [Doucet and Johansen 2009] generate samples from the posterior by considering partial

model executions. The idea is to spawn multiple instances of the model called particles, and then
repeatedly switch between (i) running the various particles in parallel up to their next observation, and
(ii) subjecting them to a resampling process [Hol et al. 2006]. Resampling is a stochastic strategy for
�ltering out particles whose observations are deemed unlikely to have come from the posterior, i.e. are
weighted lower than other particles. Ideally, after many resampling steps, only particles that closely
approximate the posterior will remain.

A particle �lter con�guration is a list of (particle, weight) pairs of type (Model a, w). The key operation
is resampling, which transforms a con�guration by discarding some particles and duplicating others,
but usually keeping the number of particles constant; we expose this as an extension point via the
inference e�ect type Resample w in Fig. 5.6. The model interpreter type ModelStep w a for particle �lter is
distinctive because it characterises particle steppers, which partially execute particles: a particle stepper
resumes a suspended particle with weight w, executes it by some unspeci�ed amount, and returns an
updated particle and weight.

The inference skeleton pfilter nF0 describes a generic particle �lter, recursively running a set of n

particles with a starting weight of F0 until termination using pfStep, at each iteration using the particle
stepper step to obtain a new con�guration pFs′. The function done examines the new con�guration to
determine whether all particles have terminated, in which case the return values and �nal weights of
the particles rs are returned, or whether some particles are still executing, in which case the algorithm
calls Resample on the con�guration and continues with the �ltered result.

The handler advance is a reusable inference component intended for implementing particle steppers.
Given an initial weightF , it advances a particle to the next Observe, returning the rest of the computation k

y unhandled, along with the accumulated weight at that point. Matching on Val instead means the particle
has terminated, and so is returned alongside its �nal weight. Notice that advance is not implemented in
terms of handle; this is because handle produces a “deep” handler [Hillerström and Lindley 2018] which

63

Inference Pattern: Particle Filter
Inference skeleton

pfilter :: (Resample w ∈ fs, IO ∈ fs)
⇒ Int→ w→ ModelStep w a→ Model a→ Comp fs [(a, w)]

pfilter n F0 step model = do
let pfStep pFs = do pFs′← call (mapM step pFs)

case done pFs′ of
Just rs → Val rs
Nothing → call (Resample pFs′) >>= pfStep

pfStep (replicate n (model, F0))

Inference operations

data Resample w a where
Resample :: [(Model a, w)] → Resample w [(Model a, w)]

Model interpreter type

type ModelStep w a = (Model a, w) → IO (Model a, w)

Auxiliary definitions

done :: [(Model a, w)] → Maybe [(a, w)]
done ((Val x , F) : pFs) = done pFs >>= Just ◦ ((x,F) :)
done (_ : _) = Nothing
done [] = Just []

advance :: LogP→ Handler Observe es a (Comp (Observe : es) a , LogP)
advanceF (Val x) = Val (Val x , F)
advanceF (Op op k) = case decomp op of

Le� (Observe d y _) → Val (k y, F + logProb d y)
Right op4B → Op op4B (advanceF ◦ k)

Figure 5.6: Inference Pattern: Particle Filter

discharges the handled e�ect from the e�ect signature, and so does not support the shallow (partial)
handling needed for suspensions.

We now present two concrete instances of Particle Filter, namely Multinomial Particle Filter (Sec-
tion 5.3.1) and Resample-Move Particle Filter (Section 5.3.2), the latter constructed using Metropolis-
Hastings. We also present Particle Metropolis-Hastings (Section5.3.3), an instance of Metropolis-Hastings
constructed using Particle Filter.

5.3.1 Pattern instance: Multinomial Particle Filter

Many basic variants of particle �lters can be implemented by recording just the log probabilities of
particles, specialising w in Resample w and ModelStep w to LogP. A popular example is a particle �lter
that uses a multinomial resampling algorithm, de�ned in Fig. 5.7. To interpret Resample pFs, containing
= particles ps and their weights Fs, we use the categorical distribution to draw = integers from the range
[0, ..., = − 1] with log probabilities corresponding to the normalised weights Fsnorm. These integers, idxs,
indicate the positions of particles to continue executing with, which are extracted by indexing with (‼),
and then uniformly paired with the mean weight Fs; it is expected for particles with higher weight to
be selected more than once, and unlikely ones pruned.

64

Pattern Instance: Multinomial Particle Filter
Concrete algorithm

mulpfilter :: Int → Model a→ IO [(a, LogP)]
mulpfilter n = runImpure ◦ handleResamplemul ◦ pfilter n 0 stepModelmul

Inference handler

handleResamplemul :: IO ∈ fs⇒ Handler (Resample LogP) fs a a
handleResamplemul = handle Val hop where

hop (Resample pFs) k = do let (ps , Fs) = unzip pFs
(Fsnorm,Fs) = (normaliseFs, logMeanExpFs)

idxs ← call (replicateM (length ps) (categorical Fsnorm))
k (map ((,Fs) ◦ ps‼) idxs)

Model interpreter

stepModelmul :: ModelStep LogP a
stepModelmul (p,F) = (runImpure ◦ defaultSample ◦ advanceF) p

Auxiliary definitions

normalise :: [LogP]→ [LogP]
logMeanExp :: [LogP]→ LogP
categorical :: [LogP]→ IO Int

Figure 5.7: Multinomial Particle Filter as an instance of Particle Filter

For model execution, Observe is handled with advance, and Sample can be interpreted simply with
defaultSample (Fig. 3.8) for drawing random values. Then we can derive mulpfilter by using pfilter n 0

handleParticle to construct an abstract particle �lter of n particles with starting weight 0, and composing
with (runImpure ◦ handleResamplemul) to specialise to a multinomial particle �lter that generates n samples
from the posterior and their �nal weights.

5.3.2 Pattern instance: Resample-Move Particle Filter

Complex inference problems often require the programmer to combine di�erent top-level inference
procedures, each addressing a di�erent sub-problem. For example, the resampling step in particle
�ltering can result in many particles becoming the same, limiting the range of values sampled from the
posterior, a problem called particle degeneracy. One solution is to use Metropolis-Hastings proposals to
“move around” the sampled values of each particle after resampling, an approach called the Resample-
Move Particle Filter [Gilks and Berzuini 2001]. This kind of wholesale algorithm reuse is also supported
in our framework, and we show this now by deriving Resample-Move Particle Filter in Fig. 5.8 from the
pfilter skeleton, providing a Resample handler which calls Single-Site Metropolis-Hastings (Section 5.2.2).

To specialise Particle Filter to use Metropolis-Hastings, we set the weight parameter w to PState,
storing an execution trace alongside each particle’s weight to allow for proposals. To know how far to
execute a particle under a given proposal, the state variable t in the Resample handler tracks the number
of observations encountered so far in the model, incremented at each resample.

To handle Resample, we unzip the particle states into their weights Fs and traces gs, and use the
weights to resample a selection of traces gsres via the same multinomial resampling procedure used in
Fig. 5.7. The helper suspendA�er then produces a copy modelt of the model suspended after observation
t, which will let us instantiate new particles that resume at that point. We execute modelt under each

65

Pattern Instance: Resample-Move Particle Filter
Concrete algorithm

rmpf :: Int → Int→ Model a→ IO [(a, PState)]
rmpf n m model = (runImpure ◦ handleResamplermpf m model ◦ pfilter n (0, empty) stepModelrmpf) model

Inference handler

handleResamplermpf :: IO ∈ fs⇒ Int→ Model a→ Handler (Resample PState) fs a a
handleResamplermpf m model = handleWith 0 (const Val) hop where

hop t (Resample pFgs) k = do
let (Fs, gs) = (unzip ◦ map snd) pFgs

(Fsnorm,Fs) = (normalise Fs, logMeanExpFs)
idxs ← call (replicateM (length gs) (categorical Fsnorm))

let gsres = map (gs ‼) idxs
modelt = suspendA�er t model

k (t + 1) =<< forM gsres (_g → do (pmov, (_, gmov)) : _← call (ssmh m g modelt)
return (pmov, (Fs, gmov)))

Model interpreter

stepModelrmpf :: ModelStep PState a
stepModelrmpf (p, (F , g)) = (rassoc ◦ runImpure ◦ reuseTrace g ◦ advanceF) p

Auxiliary definitions

type PState = (LogP, Trace)

suspendA�er :: Observe ∈ es⇒ Int→ Comp es a→ Comp es (Comp es a)
suspendA�er _ (Val x) = Val (Val x)
suspendA�er t (Op op k) = case prj op of

Just (Observe d y _) → if t ≤ 0 then Val (k y) else Op op (suspendA�er (t - 1) ◦ k)
Nothing → Op op (suspendA�er t ◦ k)

Figure 5.8: Resample-Move Particle Filter as an instance of Particle Filter

resampled trace in gsres for a series of ssmh updates; the most recent update is taken, from which the
�nal “moved” particle pmov and corresponding trace are used.

The model interpreter is simply a particle stepper which uses reuseTrace rather than defaultSample to
record and then reuse the particle’s trace. The concrete algorithm rmpf n m can then be assembled from
these components, describing a multinomial particle �lter of n particles, where each resampling step is
followed by m Single-Site Metropolis-Hastings updates to each particle.

5.3.3 Pattern instance: Particle Metropolis-Hastings

We are now able to revisit the Metropolis-Hastings inference pattern from Section 5.2, and show that
our framework makes it equally easy to reuse a particle �lter inside Metropolis-Hastings. Section 5.2
only considered algorithms where the proposed traces g �xed the values of all latent variables, fully
determinising the model. But often we only care about proposing a subset of the trace, g\ for some
variables of interest \ , allowing the other latent variables to be freshly sampled. It then becomes
possible to use a particle �lter to run each proposal for many di�erent simulations, averaging over the
particles to compute the likelihood used to accept or reject the proposal. This is known as Particle

66

Pattern Instance: Particle Metropolis-Hastings
Concrete algorithm

pmh :: Int → Int→ [Addr]→ Model a→ IO [(a, (LogP, Trace))]
pmh m n \ model = do

(_ , g)← (runImpure ◦ reuseTrace empty ◦ defaultObserve) model
let g\ = filterKey (`elem` \) g
(runImpure ◦ handleProposeim ◦ mh m g\ (execModelpmh n)) model

Model interpreter

execModelpmh :: Int→ ModelExec LogP a
execModelpmh n g\ model = do
let stepModelpmh :: ModelStep LogP a

stepModelpmh (p,F) = (fmap fst ◦ runImpure ◦ reuseTrace g\ ◦ advanceF) p

(xs , Fs)← (fmap unzip ◦ runImpure ◦ handleResamplemul ◦ pfilter n 0 stepModelpmh) model
let (Fsnorm,Fs) = (normaliseFs, logMeanExpFs)
idx ← categorical Fsnorm

return (xs ‼ idx, (Fs, g\))

Figure 5.9: Particle Metropolis-Hastings as an instance of Metropolis-Hastings

Metropolis-Hastings [Dahlin et al. 2015] and is used to reduce the variance of likelihood estimates of
proposals. Fig. 5.9 derives a version of this algorithm from the Metropolis-Hastings pattern, providing a
ModelExec that also calls a multinomial particle �lter (Section 5.3.1), and reusing the Propose handler
from Independence Metropolis (Section 5.2.1).

The model interpreter takes a number of particles n and trace g\ providing values for the latent
variables of interest, i.e. addresses \ . It begins by de�ning an internal particle stepper which executes a
particle to the next observation as usual, but handles Sample with reuseTrace g\ so that each particle uses
�xed values for the latent variables in \ , using fmap fst to ignore the updated trace. The particle stepper
is then used to instantiate a particle �lter otherwise identical to the multinomial one, producing a list
of particle outputs xs and weights Fs. To conform to the ModelExec type for Metropolis-Hastings, the
model interpreter must return a model result plus a weight and trace; for the model result we draw an
element of xs with probability proportional to the weights, and for the weight we use the log mean of
Fs. For the trace, we return g\ rather than the possibly extended trace returned by reuseTrace, to avoid
�xing stochastic choices other than those in g\ (when handling Propose in Section 5.2.1).

The algorithm pmh m n \ then describes m Independence Metropolis proposals for addresses \ , but
where each proposal is weighted by simulating the model as n particles. The �rst two lines of pmh

initialise g\ , using reuseTrace empty to populate an empty trace, and then �ltering to the addresses in \ .

67

5.4 Inference pattern: Guided Optimisation

The objective of inference so far has been to approximate the posterior distribution of a model by
generating samples from it, a broad family of approaches known as Monte Carlo methods [Cranmer
et al. 2020]. A di�erent objective, known as parameter estimation, aims to numerically optimise a set of
distribution parameters, which can then be interpreted as a so-called “point estimate” of the posterior. In
this section, we present a �nal inference pattern called Guided Optimisation, an approach to parameter
estimation following Bingham et al. [2019]. This pattern operates over a special kind of model that we
call a guided model, which supports an operation called GuidedSample in addition to the usual Sample

and Observe. We introduce this idea before turning to the pattern itself.

5.4.1 Guided models

Consider the linear regression model below, identical to the one in Section 2.2 except that latent
variable< is described by a new operation GuidedSample, taking two distributions. The �rst is the prior
distribution, representing the model’s prior beliefs about that latent variable, as usual; the second is a
guide distribution, or simply guide. Unlike the prior, which is intended to be �xed, the guide’s parameters
can be changed during inference. Here the parameters of the guide are initially 0 and 3; it is common
(although not required) for the guide to initially match the prior, as it does below.

linRegr :: Double→ Double→ GuidedModel (Double, Double)
linRegr G ~ = do

< ← call (GuidedSample (Normal 0 3) (Normal 0 3))
2 ← call (Sample (Normal 0 2))
call (Observe (Normal (< ∗ G + 2) 1) ~)
return (<, 2)

The idea of guided optimisation is to iteratively propose new parameters for the guide, and then,
during model execution, sample from the guide rather than the prior. The extent to which these samples
align with the prior and observations, provides a weighting of how well the current guide approximates
the model’s posterior. The algorithm then uses a gradient update operation, which combines the weight
with some additional gradient information to determine revised values for the guide’s parameters. Ideally,
over many iterations, the parameters of the guide will converge on an accurate estimate of the posterior.

The type GuidedModel, given in Fig. 5.10, extends the e�ect signature of a probabilistic model with
a new e�ect type GuidedSample, representing distributions with optimisable parameters which can be
used to “guide” the samples of a model in this way.

type GuidedModel a = Comp [GuidedSample, Observe, Sample, IO] a

data GuidedSample a where
GuidedSample :: (Dist d a, Di�Dist q n a) ⇒ d→ q→ Addr→ GuidedSample a

class Dist q a ⇒ Di�Dist q (n :: Nat) a | q → n where
X logProb :: q → a→ Vec n Double
(⊕) :: q → Vec n Double→ q

Figure 5.10: Guided models: models with optimisable distributions

68

Its single operation GuidedSample d q takes a regular distribution d generating samples of type a, and
a guide distribution q which generates samples of the same type and has n parameters that can be
optimised. The latter property is expressed by the constraint Di�Dist q (n :: Nat) a, asserting that q is a
di�erentiable distribution with n parameters, where n is a type-level natural number.

Instances of Di�Dist q n a can use X logProb, representing the score function [Fu 2006]. It is de�ned as
follows: given that function logProb q y computes the log probability of q generating y (Fig. 5.1), then
X logProb q y computes the partial derivatives of the function at that point with respect to q’s parameters,
returning these as a vector of type Vec n Double. A vector of partial derivatives is known as a gradient,
and can be used to adjust the distribution’s n parameters via the operator (⊕) for element-wise addition
(requiring those n parameters to also have type Double).

For example, below de�nes the normal distribution with its usual parameters of mean ` and standard
deviation f , and its type class instances for Dist and Di�Dist.

data Normal = Normal { ` :: Double, f :: Double }

instance Dist Normal Double where
logProb :: Normal→ Double→ Double
logProb (Normal ` f) y = −((y − `)2 / (2 ∗ f2)) − log (sqrt (2 ∗ pi)) − log f

draw :: Normal→ Double→ Double
draw (Normal ` f) r = (− invErfc (2 ∗ r)) ∗ (sqrt 2) ∗ f + ` where invErfc = inverse error function

instance Di�Dist Normal Nat2 Double where
X logProb :: Normal→ Double→ Vec Nat2 Double
X logProb (Normal ` f) y = (d` ::: df ::: VNil) where

d` = (y − `)/(f2)
df = −1/f + (y − `)2/(f3)

(⊕) :: Normal→ Vec Nat2 Double→ Normal
(Normal ` f) ⊕ (d` ::: df ::: VNil) = Normal (` + d`) (f + df)

Figure 5.11: Normal distribution + type class instances for Dist and Di�Dist

The type-level natural Nat2 indicates that the normal distribution has two parameters. The function
X logProb (Normal ` f) y computes the partial derivatives of logProb (Normal ` f) y with respect to ` and
f , returning these inside a gradient vector of size two.

5.4.2 Inference pattern: Guided Optimisation

The Guided Optimisation pattern in Fig. 5.12 learns the parameters of the guides in a GuidedModel. A
con�guration in Guided Optimisation is the set of guide distributions qs in the model, represented by the
type Guides. The model interpreter type GuidedExec runs a model under a con�guration qs, returning a
weight and some gradient information about qs, of type ΔGuides. We explain Guides and ΔGuides next.

To store guide distributions of di�erent types in the same data structure, and similarly for their
gradients, we use Haskell’s dependent map type DMap k f, which for any a, maps keys of type k a to
values of type f a. Here, we specialise keys to the datatype Di�Dist q n a⇒ Key q with a constructor that
stores an address U , identifying a speci�c GuidedSample operation. The synonym Guides then maps these
keys to values of type Identity q, containing the guide distribution of type q associated with that key’s
address. The synonym ΔGuides maps the same keys to values of type VecFor q, containing the guide q’s
gradient vector of type Vec n Double. The operator (⊕̂) lifts (⊕) to work over values from these maps.

69

Inference Pattern: Guided Optimisation
Inference skeleton

guidedOpt :: (GradUpdate ∈ fs, IO ∈ fs)
⇒ Int → Int → Guides
→ GuidedExec a→ GuidedModel a→ Comp fs Guides

guidedOpt t n qs0 exec model = guidedStep 0 qs0
where guidedStep i qs

| i < t = do XFs← call ((replicateM n ◦ fmap snd ◦ exec qs) model)
call (GradUpdate XFs qs) >>= guidedStep (i + 1)

| otherwise = return qs

Inference operations

data GradUpdate a where
GradUpdate :: [(ΔGuides , LogP)] → Guides→ GradUpdate Guides

Model interpreter type

type GuidedExec a = Guides→ GuidedModel a→ IO (a, (ΔGuides, LogP))

Auxiliary definitions

type Guides = DMap Key Identity
type ΔGuides = DMap Key VecFor
data Key q = forall n a. Di�Dist q n a ⇒ Key { U :: Addr }
data VecFor q = forall n a. Di�Dist q n a ⇒ VecFor { X :: Vec n Double }

(⊕̂) :: Di�Dist q n a ⇒ Identity q → VecFor q→ Identity q
Identity q ⊕̂ VecFor X = Identity (q ⊕ X)

useGuides :: GuidedSample ∈ es⇒ Guides→ Comp es a→ Comp es (a, ΔGuides)
useGuides qs = loop empty where

loop Xs (Val x) = Val (x , Xs)
loop Xs (Op op k) = case prj op of

Just (GuidedSample d (q :: tyq) U) → do let kU = (Key U :: Key tyq)
Identity q′ = findWithDefault kU (Identity q) qs

x ← call (GuidedSample d q′ U)
let Xs′ = insert kU (VecFor (X logProb q′ x)) Xs
loop Xs′ (k x)

Nothing→ Op op (loop Xs ◦ k)

Figure 5.12: Inference Pattern: Guided Optimisation

The inference skeleton guidedOpt t n qs0 performs t abstract updates to an initial con�guration qs0 by
iterating guidedStep, returning the �nal con�guration at the end. Each update has two phases. The �rst
phase is simulation, where the model is executed n times under the current con�guration qs, producing
a list of n weighted gradients XFs :: [ΔGuides, LogP]. The second phase is optimisation, which calls the
inference pattern’s key operation, GradUpdate of e�ect type GradUpdate, representing an approach to
gradient updating. In general, GradUpdate XFs qs will compute a chosen form of gradient estimate from
the values in XFs, and then combine this with a choice of gradient descent method to update qs.

The auxiliary function useGuides is a reusable inference component. It runs a model under a
con�guration qs, intercepting any GuidedSamples to use the guide parameters found in qs (in preference
to those in the model), and recording the gradients of the guides at their samples. Note that useGuides

does not handle any e�ects, and so the task of actually interpreting GuidedSample is left to a later stage.

70

Pattern Instance: Black Box Variational Inference
Concrete algorithm

bbvi :: Int → Int→ Guides→ GuidedModel a→ IO Guides
bbvi t n qs0 = runImpure ◦ handleGradEstbbvi ◦ guidedOpt t n qs0 execModelbbvi

Inference handler

handleGradEstbbvi :: Handler GradUpdate fs a a
handleGradEstbbvi = handleWith 1 (const Val) hop where

hop t (GradUpdate XFs qs) k = let Δqs = fmap (map (/t)) (scoreEstimator XFs)
in k (t + 1) (intersectionWith (⊕̂) qs Δqs)

Model interpreter

execModelbbvi :: GuidedExec a
execModelbbvi qs = sumF ◦ runImpure ◦ defaultSample ◦ likelihood ◦ latentDi� ◦ useGuides qs
where sumF = fmap (_ ((x, Fobs),Flat)→ (x,Fobs +Flat))

Auxiliary definitions

latentDi� :: Sample ∈ es⇒ Handler GuidedSample es a (a, LogP)
latentDi� = handleWith 0 (_F x→ Val (x,F)) hop where

hopF (GuidedSample d q U) k = do x ← call (Sample q U); k (F + logProb d x - logProb q x) x

scoreEstimator :: [(ΔGuides , LogP)] → ΔGuides

Figure 5.13: Black Box Variational Inference as an instance of Guided Optimisation

We now present a concrete instance of Guided Optimisation called Black Box Variational Inference
in Section 5.4.3. We discuss other potential instances as future work in Section 6.1.

5.4.3 Pattern instance: Black Box Variational Inference

Black Box Variational Inference [Wingate and Weber 2013; Ranganath et al. 2014] in Fig. 5.13 learns
the parameters of the guides by maximising a weight called the evidence lower bound, which is the
product of (i) the probability ratio of the guide distributions relative to the prior distributions for
latent variables, and (ii) the likelihood of observed variables. These are respectively computed during
model execution in execModelbbvi , by using latentDi� to handle GuidedSample, and likelihood to handle
Observe. Here, latentDi� replaces each operation GuidedSample d q with Sample q — to be later handled
by defaultSample (Fig. 3.8) for simply drawing random samples — and accumulates the di�erences in log
weights of d and q generating each sample.

To handle GradUpdate in handleGradEstbbvi, Black Box Variational Inference uses a score function

estimator 2 to estimate the guides’ gradients; we omit the implementation of scoreEstimator, which is a
standard gradient estimation method [Glynn 1990; Fu 2006]. The gradient estimates are then scaled by
a learning rate of 1/t and added to the current guide parameters using intersectionWith (⊕̂), which is a
vanilla approach to gradient descent.

Deriving bbvi from guidedOpt, given an initial con�guration of guides qs0, is then similar to other
pattern instances. It is also straightforward to derive variants of bbvi that plug in other gradient descent
approaches, like Adam [Kingma and Ba 2014] or Adagrad [Lydia and Francis 2019].

2also known as likelihood-ratio estimator or reinforce-style estimator

71

5.5 Performance evaluation

This section shows that our implementation is capable of competing with state-of-the-art probabilistic
programming systems, suggesting that the choice of algebraic e�ects as a foundation does not imply
a compromise on performance. We compare with two systems: MonadBayes3 [Ścibior, Kammar, and
Ghahramani 2018], a Haskell library that uses a monad transformer e�ect system, and Gen4 [Cusumano-
Towner et al. 2019], an embedded language in Julia. Both are written in general-purpose languages and
were designed with programmable inference as an explicit goal.

We compared the mean execution times of four algorithms: Single-Site Metropolis-Hastings (SSMH),
Multinomial Particle Filter (MPF), Particle Metropolis-Hastings (PMH), and Resample-Move Particle
Filter (RMPF). Each algorithm is applied across three types of models: linear regression, hidden Markov
model, and Latent Dirichlet allocation. These experiments were carried out on an Intel Core i7-9700
CPU with 16GB RAM.

On average, we outperform either one or both of the other systems across all algorithms, sometimes
asymptotically or by several orders of magnitude. When varying the number of iterations performed or
particles used by each algorithm in Fig. 5.14a, our performance scales linearly across all models. Our
performance remains linear when varying the number of observations provided to models in Fig. 5.14b,
except for RMPF where, like MonadBayes and Gen, we scale quadratically.

Against MonadBayes, for SSMH we are on average 15x slower for linear regression, and 1.8x faster
for other models. The former result is likely because of the speci�c linear regression model used, which
varies only in the number of observe operations, and in contrast to our implementation, their version of
SSMH does not store log weights for individual observations, but instead simply sums over them. For
MPF, PMH, and RMPF, we are on average faster by 27x, 16x, and 4.9x across all models. When increasing
the number of particles in MPF and PMH, the runtime of MonadBayes scales quadratically, and the
process is killed when more than a moderate number of particles are used. We suspect this is due to
their use of the ListT monad transformer to represent collections of particles, which in our experience
scales poorly as the size of the transformer stack grows.

Comparing with Gen, we are roughly 1.1x and 72x faster for SSMH and MPF, the latter arising mainly
because Gen’s MPF implementation scales quadratically with the number of model observations, and
for RMPF, we are on average 2.9x slower. We do not compare PMH since it is not directly provided in
Gen, and so leave this to future work. Another task is to compare the performance of BBVI, which Gen
does provide. However, their BBVI implementation is much more sophisticated than ours, for example
allowing individual distribution parameters to be optimised (we default to all), and supporting several
gradient descent algorithms (we use vanilla gradient descent); to derive a meaningful comparison of
such inference algorithms that rely on di�erentiation, further work is needed (Section 6.1). Exploring
performance of e�ect handlers with PPLs in general is also a challenging topic we plan to investigate
separately, including techniques speci�c to algebraic e�ects, such as the codensity monad [Voigtländer
2008], and alternative representations of e�ectful programs, for example by Wu and Schrijvers [2015].

In terms of optimisations to our framework, a key performance improvement resulted by separating
the e�ect signatures of the model and inference algorithm, allowing each one to be handled (executed)
individually. If the implementation of inference were to incorporate the model’s e�ects into its own

3h�ps://github.com/tweag/monad-bayes
4h�ps://github.com/probcomp/Gen.jl

72

https://github.com/tweag/monad-bayes
https://github.com/probcomp/Gen.jl

(a) Execution times of inference algorithms (top) with varying number of algorithm iterations or particles. The
right-hand axis �xes the number of observations. PMH-50 indicates 50 MH updates that vary in the number of
particles, and RMPF-10 indicates 10 particles that vary in the number of MH updates.

(b) Execution times of inference algorithms (right) with varying number of observations. The right-hand axis
�xes the number of algorithm iterations or particles. PMH-50-10 indicates 50 MH updates that use 10 particles;
RMPF-10-1 indicates 10 particles that use 1 MH update.

Figure 5.14: Performance comparison of our system, ProbFX, with MonadBayes and Gen in terms of
mean execution times. The number of executions per mean is left to the control of the benchmarking
suites, Criterion (Haskell) and BenchmarkTools.jl (Julia). Truncated line plots indicate an algorithm
being killed early by the host machine for certain benchmark parameters. Missing line plots indicate an
algorithm not being readily implemented in the system.

73

https://hackage.haskell.org/package/criterion
https://github.com/JuliaCI/BenchmarkTools.jl

computation, and the interpretation of the model deferred until the handling of the inference operations,
then the e�ect signature for inference would need to include model operations like Observe and Sample,
and the resulting computation trees would be much larger; the size of the tree would then be further
exacerbated by the model being run (i.e. inlined into the tree) for typically thousands of algorithm
iterations. We noticed that having the e�ect signatures distinct made for a more e�cient design, where
each algorithm iteration instead fully executes the model all the way to an IO action, keeping the
computation trees that are executed relatively small.

5.6 Qualitative comparison and related work

This section investigates how successfully our approach meets the needs of inference programming,
contrasting the qualities of our design with some of the leading PPLs that also target this. Chapter 5
identi�ed two key forms of extensibility central to programmable inference, of which we have seen
several examples in the preceding sections:

1) Reinterpretable models. Inference algorithms need to be able to provide custom semantics for models.
Speci�c algorithms require speci�c interpretations of Sample and Observe, as well as �ne-grained
control over model execution, so they can implement essential behaviours like suspended particles
and tracing. “Programmability” here means being able to easily customise how models execute in
order to derive or adapt inference algorithms.

2) Modular, reusable algorithms. Di�erent algorithms from the same broad family implement di�erent
strategies for key behaviours like resampling or proposing new samples. “Programmability” here
means being able to plug alternative behaviours into an existing algorithm without reimplementing
it from scratch, but also being able to de�ne new abstract algorithms that are easily pluggable in
this way.

Given that inference programming is often undertaken by domain experts, for whom the activity may
primarily be a means to an end, programmability matters. Here we look at how programmability is
achieved in existing systems, �rst brie�y considering mainstream techniques in Section 5.6.1, which are
dynamically typed, and then turning in more detail to MonadBayes in Section 5.6.2, the main existing
system based on typed e�ects.

5.6.1 Dynamically typed approaches

The majority of programmable inference systems to date have been implemented in dynamically typed
languages, which often o�er �exibility at the price of a less structured approach. Here we consider
Venture, Gen, Pyro, and Edward. The inference frameworks of most other mainstream PPLs, like
Stan [Carpenter et al. 2017], Anglican [Tolpin et al. 2016], and Turing [Ge et al. 2018], are non-modular
or black box, and not designed with inference programming in mind.

5.6.1.1 Venture

1) Reinterpretable models. Venture [Mansinghka, Selsam, et al. 2014] introduced the idea of inference
programming, and represents top-level programs as interleaved sequences of modelling instructions

74

and inference instructions. The inference instructions then a�ect the semantics of prior modelling code.
For example, Fig. 5.15a shows a top-level program for inference on a linear regression model; it �rst
binds the model’s variables to the global environment (assume), and then interleaves new observations
(observe) with invocations of Single-Site Metropolis-Hastings inference (infer) , thus incorporating the
observations to evolve the probability distribution over the model’s executions. Although �exible, e.g.
permitting sub-problems of the model to be easily inferred in isolation, it lacks a clear delination between
modelling and inference provided by a more modular approach.

2) Modular, reusable algorithms. Venture achieves reuse of inference components mainly via its set of
built-in inference expressions in Fig. 5.15b. These express a range of high-level inference procedures,
like rejection sampling and Metropolis-Hastings, as low-level primitives that can be passed to the
infer instruction. The idea is that given the right primitives and means of combination, more complex
inference strategies can be assembled. While it is possible to add new inference primitives, these must
be written in Venture’s specialised DSL, and can only reuse code from that DSL. Inference programs
embedded in richer languages can reuse familiar host abstractions, like pattern matching and recursion
in suspendA�er (Section 5.3.2), thus avoiding the need for new DSL constructs; they can also incorporate
external inference code and data structures, such as our use of dependent maps in useGuides (Section5.4.2),

assume m = normal(0, 2)
assume c = normal(0, 3)
assume linRegr = proc(x) { normal(m ∗ x + c, 1) }
observe (linRegr 0) = 0.3
infer (mh ...)
observe (linRegr 1) = 2)4
infer (mh ...)

(a) Reinterpretable models: via modelling (assume,
observe) and inference instructions (infer)

(rejection <args>)
(mh <args>)
(pgibbs <args>)
(meanfield <args>)
(nesterov <args>)

(b) Modular, reusable algorithms: via built-in in-
ference expressions as primitives

Figure 5.15: Inference programming in Venture

5.6.1.2 Gen

1) Reinterpretable models. Gen [Cusumano-Towner et al. 2019] (in Julia) provides a closed interface of
methods for interacting with models as black boxes, exposing certain capabilities intended for inference.
Fig. 5.16a shows a subset of the interface; for example, Gen.propose selects variables of the model to
propose samples for, and Gen.update updates a model’s execution trace according to such a selection.
The operations of the Gen interface are, however, non-programmable (have �xed meanings).

2) Modular, reusable algorithms. Gen expresses inference in terms of regular host language functions,
either de�ned by the user or provided in the library. To illustrate, Fig.5.16b shows an excerpt of a possible
Metropolis-Hastings function; the general approach is to interact with the model via Gen’s bespoke
model interface, and use the results to describe an algorithmic procedure. While functions are technically
reusable, the lack of a type discipline means that they tend to mix arbitrary, possibly side-e�ectful
code with model interactions, rather than being organised explicitly around the key operations of the
algorithm. This can make them challenging to reuse in new contexts, and shifts the burden of identifying
possible extension points onto the programmer.

75

function Gen.simulate(model, ..)

function Gen.generate(model, obs, ..)

function Gen.propose(model, ..)

function Gen.update(trace , choices , ..)

(a) Reinterpretable models: via the generative func-
tion interface

function mh(n, model, obs)
(trace , ..) = Gen.generate(model, obs, ..)
for i =1:n

(trace , ..) = mhStep(trace, model)
end

function mhStep(trace, model)
(choices , ...) = Gen.propose(model, ...)
(trace , ...) = Gen.update(trace , choices)

(b) Modular, reusable algorithms: via lightweight host
language functions

Figure 5.16: Inference programming in Gen

5.6.1.3 Pyro and Edward

1) Reinterpretable models. Pyro and Edward [Bingham et al. 2019; Moore and Gorinova 2018] (in Python)
interpret models by using a stack of programmable coroutines known as context managers [Yang et al.
2022]; the Sample calls invoked by a model’s execution will then sequentially trigger each member in
the stack. For instance, Fig. 5.17a shows the context manager ReplayMessenger, which when active on
the stack, responds to sampling by reusing values from a given trace (akin to our reuseTrace handler).

These coroutines have some of the �avour of e�ect handlers, but o�er a less structured approach
(for assigning semantics to models). For example, the approach relies on global state to maintain the
coroutine stack, where the model itself triggers each coroutine by propagating a mutable message along
them; this contrasts with the algebraic e�ect embedding where handlers are applied directly to the
model, at the top-level, using function composition. Additionally, the e�ectful operations (e.g. Sample)
are regular Python methods with their own behaviours, in contrast to being pure syntax. There is also
no type discipline for tracking e�ects and associating them to coroutines; thus, the operations that a
coroutine interprets are arbitrary, and there is no notion of an e�ect being handled (fully interpreted).

2) Modular, reusable algorithms. Pyro and Edward adopt an object-oriented design that supports algorithm
reuse through class inheritance. For example, the abstract class ELBO in Fig. 5.17b describes algorithms
that optimise the evidence lower bound; concrete examples like Black Box Variational Inference (BBVI) are
then subclasses that inherit and implement speci�c components, also making use of Python coroutines
to interact with the model, similar to how Gen’s interface is used. Using class inheritance to structure
algorithms is sometimes known as the template method [Tokuda and Batory 2001], and as far as we
know, is the closest analogue to our approach of inference patterns. As both Pyro and Edward are
untyped, it can be di�cult to recognise the key behaviours and e�ects of algorithms when implemented
as programs, in a similar way to Gen.

76

class ReplayMessenger(Messenger):
def sample(self , msg):

variable = msg["name"]
if variable in self . trace :

msg["value"] = self . trace [variable]["value"]
msg["infer "] = self . trace [" infer "]

return None

(a) Reinterpretable models: via programmable coroutines
of the Messenger class

class ELBO:
def loss (self , model, guide):

class BBVI(ELBO):
def loss (self , model, guide):
with SeedMessenger (...):
with ReplayMessenger (...):

...

(b) Modular, reusable algorithms: via object-
oriented class inheritance

Figure 5.17: Inference programming in Pyro

5.6.1.4 Delimiting model execution

A more speci�c requirement of inference programming, is control over model execution for particle
stepping. This is also realised in di�erent ways. In Gen, the programmer must parameterise their
model on the number of observations to be executed (Fig. 5.18a), and manage this aspect of execution
themselves when later using the particle �lter. In Pyro, the situation is similar; any model executed
this way must provide a method called step (Fig. 5.18b) which Pyro’s particle �lter relies essentially on.
Other dynamically typed probabilistic languages rely on continuation-passing-style transformations
of models [Tolpin et al. 2016; Goodman and Stuhlmüller 2014]. This seems to be one aspect in which
algebraic e�ects o�er a clear advantage, providing handlers with access to the continuation and making
idioms like stepwise execution easy to implement in inference code, rather than requiring any changes
to models.

@gen function linRegr(xs, num_obs)
m ∼ normal(0, 2)
c ∼ normal(0, 3)
for t=1:num_obs

ys[t] ∼ normal(m ∗ xs[t] + c , 1)
end

end

(a) Gen: via de�ning models to be parame-
terised by a delimiter index

class LinRegr:
def init (self , xs):

self.xs, self.t = xs, 0
self.m = sample("m", Normal(0, 2))
self.c = sample("c" , Normal(0, 3))

def step (self , yt=None):
self.t += 1
yt = sample("y" + str (self.t)

, Normal(self.m ∗ self.xs[self.t] + self.c, 1)
, obs=yt)

return yt

(b) Pyro: via de�ning models to implement the step method

Figure 5.18: Approaches to delimiting model execution

5.6.2 Monad transformer approach: MonadBayes

MonadBayes [Ścibior, Kammar, and Ghahramani 2018] is a Haskell library for typed functional pro-
grammable inference based on the Monad Transformer Library (MTL).

MTL [Gill 2022], a functional programming framework for imperative programming, lets the pro-
grammer stack monads on top of each other, producing a combined e�ect consisting of “layers” of
elementary monadic e�ects called monad transformers [S. Liang et al. 1995]. A given set of monads may
be layered in di�erent ways; moreover layers can be abstract, with their operations de�ned by a type

77

class. To invoke an operation of a speci�c abstract monad m from the stack, the user (or the library)
must de�ne how each monad above m relays that operation call further down the stack. A program
written in MTL, whose type is an abstract stack of monad transformers, determines its semantics by
instantiating to a particular concrete stack.

5.6.2.1 Reinterpretable models

In MonadBayes, reinterpretable models are provided by MTL’s support for abstract monad stacks. The
constrained type (MonadSample m, MonadCond m)⇒ m a represents a model, where the type constructor
m is an abstract stack of monad transformers, each providing semantics for sampling (rand) and observing
(score) by implementing the type classes MonadSample and MonadCond in Fig. 5.19a. Following the
usual MTL pattern, each concrete monad must either give a concrete behaviour for rand and/or score,
or relay that operation to a monad further down the stack. For example, the Weighted m monad is
for weighting a model m; it updates a stored weight when observing with score, but simply delegates
any calls to rand to its contained monad m, using li�. The analogue of MonadSample and MonadCond

in our library are the concrete datatypes Sample and Observe in Fig. 5.19b, whose operations are also
abstract (now as data constructors), but with semantics given by e�ect handlers rather than class
instances; the counterpart to the Weighted m monad is the likelihood handler which interprets Observe to
accumulate a weight. The analogue of relaying comes “for free” in the algebraic e�ects implementation,
via handleWith (Section 2.3.3).

While the monad transformer approach is both compositional and type-safe, the network of relaying
that arises in the semantics of a model in MonadBayes is non-trivial. More than one concrete monad in
the stack may perform its own Sample and Observe behaviours, such as the Traced monad in Fig. 5.19a
which recursively applies rand and score to its monadic components, whereas others may choose not to
relay their operations. As this relaying is carried out implicitly, via type class resolution, the eventual
runtime behaviour of a model is sometimes far from obvious. With algebraic e�ects, the correspondence
between modelling operations and their semantics is perhaps more obvious in the form of handlers, such
as the reuseTrace and likelihood handlers in Fig. 5.19b which provide semantics for Sample and Observe.

5.6.2.2 Modular, reusable algorithms

In MonadBayes, the reusable building blocks are datatypes that implement the type classes MonadSample

and MonadCond from Fig. 5.19a, such as Weighted and Traced. Inference algorithms are functions that
instantiate a model’s type from an abstract stack to a speci�c sequence of these datatypes. For example,
the (simpli�ed) type of rmpf in Fig. 5.20a, read inside-out, instantiates the supplied model to “a list of
weighted, traced executions”. This expresses Resample-Move Particle Filter as a computation that nests
Metropolis-Hastings (using Traced) inside a particle �lter (using ListT to contain particles). Conversely,
the type of pmh suggests that Particle Metropolis-Hastings uses a particle �lter inside Metropolis-
Hastings. Thus the construction of inference algorithms out of reusable parts is expressed primarily
at the type level: by selecting combinations of datatypes, one determines the speci�c sampling and
conditioning behaviours that occur at runtime and the order in which those e�ects should interact.

Algebraic e�ects are similar in a way: the programmer also selects an ordering of abstract operations
when instantiating the e�ect signature es in Comp es a. However, the operations’ semantics are not
determined by the e�ect types themselves, but are given separately by e�ect handlers. For instance,

78

Sampling and observing as type class methods

class Monad m⇒ MonadSample m where
rand :: m Double

class Monad m⇒ MonadCond m where
score :: LogP→ m ()

Monad for weighting a model

data Weighted m a
= W (StateT LogP m a)

instance MonadSample m
⇒ MonadSample (Weighted m) where

rand = li� ◦ rand

instance Monad m
⇒ MonadCond (Weighted m) where

score F = W (modify (+F))

Monad for tracing a model

data Traced m a
= Tr (Weighted (FreeT SamF m) a) (m (Trace′ a))

instance MonadSample m
⇒ MonadSample (Traced m) where

rand = Tr rand (fmap singleton rand)

instance MonadCond m
⇒ MonadCond (Traced m) where

score F = Tr (scoreF) (scoreF » return (scoreF))

(a) MonadBayes: via type classes and class instances

Sampling and observing as data constructors

data Sample a where
Sample :: Dist d a ⇒ d→ Addr→ Sample a

data Observe a where
Observe :: Dist d a ⇒ d→ a→ Addr→ Observe a

Handler for weighting a model

likelihood :: Handler Observe es a (a , LogP)
likelihood = handleWith 0 hval hop where

hval F x = Val (x , F)
hop F (Observe d y) k = k (F + logProb d y) y

Handler for tracing a model

reuseTrace :: Trace → Handler Sample es a (a , Trace)
reuseTrace g0 = handleWith g0 hval hop where

hval g x = Val (x , g)
hop g (Sample d U) k =
do r ← call random

let (r ′, g ′) = findOrInsert U r g
k g ′ (draw d r′)

(b) ProbFX: via operations and handlers

Figure 5.19: Reinterpretable models (sampling and observing) in MonadBayes vs. ProbFX

the algorithm rmpf in Fig. 5.20b is implemented by choosing a composition of handlers stepModelrmpf

for executing the model, plus a handler handleResamplermpf for the inference e�ect. Here, constructing
inference algorithms out of reusable parts is expressed mainly at the value level, via e�ect handler
composition, without the need to adjust the types.

While each of the concrete monads in MonadBayes is by itself intuitive to use, for sophisticated
algorithms like rmpf, the transformer stacks can become unwieldy. To extend an algorithm with a
new monad, perhaps with its own type class operations, requires each existing monad in the stack to
provide a corresponding instance, and the new datatype in turn to provide an implementation of each
supported operation in the stack. Thus programmability in MonadBayes comes with a certain cost in
terms of the amount of boilerplate required. With algebraic e�ects, support for new semantics is possibly
more lightweight by requiring only a new handler to de�ne the relevant operations. For example, by
swapping out the Resample handler in the multinomial particle �lter (Section 5.3.1), our library is able
to provide a number of other particle �lter variants not discussed in the thesis, such as residual and
systematic [Doucet and Johansen 2009], and also compose these parts to form other algorithms like
Resample-Move Particle Metropolis-Hastings [Chopin et al. 2013].

79

rmpf :: Traced (Weighted (ListT IO)) a
→ ...

pmh :: Weighted (ListT (Traced IO)) a
→ ...

(a) MonadBayes: via type-level composition of
monads

rmpf = handleResamplermpf ◦ pfilter stepModelrmpf where
stepModelrmpf = reuseTrace ◦ advance

pmh = handleProposeim ◦ mh execModelpmh where
execModelpmh = handleResamplemul ◦ pfilter stepModelpmh

(b) ProbFX: via value-level composition of handlers

Figure 5.20: Modular, reusable algorithms in MonadBayes vs. ProbFX

5.6.2.3 Delimiting model execution

For control over model execution, like for particle stepping, MonadBayes requires the programmer to use
speci�c control e�ects, namely the free monad transformer FreeT and the Coroutine monad. Although
model authors are oblivious to this particular detail (in contrast to Gen and Pyro in Section 5.6.1), the
inference code requires a signi�cant amount of plumbing which can obscure the key operations of the
algorithm. Algebraic e�ects o�er more native control, by providing access to the continuation in each
handler, allowing the advertised e�ect signature to be more domain-speci�c.

5.6.3 Other related work

Algebraic e�ects for inference Algebraic e�ects as a typed functional approach to implementing
inference is relatively unexplored. Some e�orts have been made towards an algebraic e�ect translation
of the MonadBayes library [Goldstein 2019], written using Koka [Leijen 2017] (instead of Haskell) which
provides a native type-and-e�ect system. Aside from this, work by Ścibior and Kammar [2015] is the
only precedent we are aware of. In Haskell, they present a basic algorithm known as rejection sampling,
de�ning an abstract inference operation Rejection and a corresponding handler that interprets rejections
by restarting model execution. In contrast to us, their inference operations are called internally to the
model, thus growing a single computation tree that describes both model and inference algorithm; when
scaling to realistically large applications, for performance, we found it necessary to keep the e�ect
signatures (and hence computation trees) of the model and inference separate.

Object-oriented design patterns for inference Our framework of inference patterns as abstract
computations, and pattern instances which handle (interpret) these computations, bears some resemb-
lence to object-oriented programming (OOP) designs [Gamma et al. 1995] – in particular, behavioural
design patterns for algorithms. Some of the closest examples include the Template Method, which
captures the skeleton of an algorithm in the superclass and lets subclasses override speci�c components;
the Strategy Pattern, which de�nes a family of algorithms as separate classes and lets their objects
be interchanged; and Chain of Responsibility, which represents particular behaviors of algorithms as
request handlers. We suspect OOP patterns, which are based on class hierarchies and tight coupling of
data and functions, may result in overly verbose implementations of the algorithms in our (small) frame-
work, but could be bene�cial for scaling to a more complex inference system. Some key advantages of
e�ect handlers (in typed functional programming) include its native access to the model’s continuation,
which is used frequently during inference (Section 5.6.1), and a structured approach for managing the
algorithms’ side-e�ects, perhaps making inference easier to reason about than in an OOP setting which
relies heavily on mutability.

80

Addresses for random choices Section 5.2 introduced the notion of addresses U for probabilistic
operations, which allow PPLs to identify the stochastic choices made during model execution. Depending
on the language, addresses are either speci�ed manually by the user or generated automatically by the
language backend. Our full implementation follows Anglican [Tolpin et al. 2016], using addresses of
the shape (name, integer), with the second element being the number of addresses so far with the same
name; we generate these addresses automatically when specialising multimodal models (MulModel) to
concrete models (Model), via an e�ect handler that implements Anglican’s addressing scheme.

Languages Pyro [Bingham et al. 2019] and PyMC3 [Salvatier et al. 2016] use string values to represent
addresses, and require the user to address all random choices in a model. Model execution is then
terminated early if the same address arises twice at runtime. Our system does not respond to duplicate
addresses, but doing so would be simple.

In Anglican [Tolpin et al. 2016] and Gen [Cusumano-Towner et al. 2019], the user can choose whether
to provide an address. In Anglican, probabilistic operations without addresses are generated an address
at runtime. In Gen, users can provide any value of the host language (Julia) as an address; all unaddressed
operations are then treated as black box randomness and so cannot be referred to by any inference
algorithms or the user. A compelling feature of Gen is its novel design of hierarchical address spacing
that automatically distinguishes the namespaces of nested models, making it easier to compose models.

Lastly, Venture [Mansinghka, Selsam, et al. 2014] and Church [Goodman, Mansinghka, et al.
2012] keep addresses fully hidden from the user and has them generated behind the scenes. Monad-
Bayes [Ścibior, Kammar, and Ghahramani 2018] has no notion of addresses at all but simply accumulates
all random choices, as real numbers from the interval [0, 1], into a list.

81

CHAPTER6
Conclusion

Probabilistic programming languages support the construction of principled, generative models which
can then be subject to Bayesian inference. But existing practical languages do not fully support reusability,
abstraction, and type-safety. This thesis showed how ideas from typed functional programming can
provide a solid foundation for these desirables, by using techniques of algebraic e�ects and e�ect
handlers to develop a modular, type-safe language for modelling and inference.

In Chapter 3, we implemented a language for probabilistic models that are modular, �rst-class,
and “multimodal” i.e. reusable for both simulation and inference. To support multimodality, we used
algebraic e�ects to capture models as syntax, and e�ect handlers to defer their semantics to a choice of
“model environment”. By embedding into a functional language (Haskell), we were able to manipulate
these models as �rst-class functions that could leverage all the features of the host language.

In Chapter4, we formalised a minimal calculus for the modelling language based on a type-and-e�ect
system for algebraic e�ects and handlers. We characterised some key abstractions of multimodal models
in the metalanguage, such as model environments and conditionable variables, along with a small-step
operational semantics describing how those models are executed under a model environment.

In Chapter 5, we developed a technique for type-driven and modular programmable inference. We
used e�ect signatures to specify the key operations of abstract inference algorithms, called “inference
patterns”. We then used e�ect handlers as an intuitive interface for interpreting those operations to
derive speci�c algorithm variants, called “pattern instances”. We showed how this technique enabled
some o�-the-shelf algorithms to be implemented in a modular way, by tailoring and recombining
their parts.

6.1 Future work and discussion

Conditionable variables: naming con�icts, multiple static uses, and matrices In Section 3.2
we introduced model environments, which express a model’s conditionable variables, such as #x, as
type-level strings. One topic of investigation is how naming con�icts between conditionable variables
should be resolved when combining models. This is not considered an issue by most existing PPLs;
many demand programmers to uniquely name each dynamic random variable instance [Salvatier et al.
2016], perhaps failing at runtime if this requirement is not met [Bingham et al. 2019]. Our language
allows model environments to have typed, orthogonally combinable variables (via constraint kinds),

83

but for further modularity, we are also considering a renaming mechanism for rebinding conditionable
variables when name clashes arise.

A related topic is when the programmer statically refers to the same conditionable variable more
than once in a model:

do x1← normal 0 1 #x

x2← normal 0 2 #x

return (x1 + x2)

Technically, this is an invalid use of a random variable, resulting in an ill-formed model where #x is
(confusingly) distributed according to two di�erent distributions. For now, programmers must take
care not to misuse conditionable variables in this way; a solution we intend to explore is an a�ne type
system for model contexts which will disallow multiple static uses of the same conditionable variable.

It is also possible to use conditionable variables to represent matrices of observed values e.g. for
modelling Bayesian neural networks. To do so, the programmer can de�ne their own distribution that
generates a matrix via the Dist type class (Fig. 3.1), and then associate a conditionable variable with
that distribution. An alternative is to use a conditionable variable that represents single values (e.g.
of type Double) and refer to it many times at runtime to manually build up a matrix. However, the
second approach con�ates a matrix, as a single observation, with a list, containing multiple observations
(inside a model environment); this requires the programmer to carefully manage this correspondence
themselves, such as avoiding providing an insu�cient number of observed values, discussed next.

Running out of observations In Section3.3, we de�ned e�ect handlers for specialising a multimodal
model under an environment of observed values. Upon running out of observed values in a list (for a given
conditionable variable), our implementation currently responds by calling Sample by default (Section3.3.2).
While this �exibility could certainly obscure programming errors, this approach is typical in PPLs such
as Turing [Ge et al. 2018] and Pyro [Bingham et al. 2019], and we also note that the correctness of
inference is una�ected. Relatedly, our use of lists for representing observations is justi�ed by the fact
that, for correctness, general-purpose inference algorithms must compute the same distribution on
traces i.e. sequences of sampled or observed values [Tolpin et al. 2016]. To instead statically constrain
the number of observations, it may be possible in some settings to use type-level naturals; or, a dynamic
check to signal when too many or too few observations are provided would be easy to implement.

Interfacing multimodal models with alternative backends We suspect it possible for our lan-
guage for multimodal models (Chapter 3) to target other inference backends in general, which would
allow users to work with �rst-class multimodal models in a typed setting, and then later execute them
with more mature or preferred implementations of inference. This has been shown with MonadBayes
[Ścibior, Kammar, and Ghahramani 2018] by de�ning e�ect handlers that interpret multimodal models
into a Monad Transformer Library setting [Gill 2022], demonstrated in Haskell and Idris [Brady 2021]
as host languages. 1 A future goal is to investigate how well this translates to inference frameworks in
untyped or imperative languages, such as Anglican [Tolpin et al. 2016] or Pyro [Bingham et al. 2019].

Inference for di�erentiable models In Section 5.4.3, we de�ned a Guided Optimisation pattern
instance called Black Box Variational Inference (BBVI). This is also known as Mean Field Variational
Inference because it makes the mean �eld assumption that all sampled variables in the (guide) model

1https://github.com/idris-bayes/prob-fx

84

are independent. This assumption means that, in contrast to many other inference methods that use
di�erentiation, BBVI only requires the score function X logProb d y (Fig.5.10) for di�erentiating logProb d y

with respect to the parameters of distribution d [Wingate and Weber 2013]. Other possible instances of
Guided Optimisation, such as Automatic Di�erentiation Variational Inference [Kucukelbir et al. 2017],
Variational Autoencoding [Kingma and Welling 2013], and Maximum Likelihood Estimation [Myung
2003], do not make this assumption, and instead need to be able to di�erentiate logProb d y with respect
to any variable in the model. Achieving this is generally done in PPLs by building on top of existing
frameworks for automatic di�erentation (AD): a procedure for interpreting standard programs as di�er-
entiable functions. For instance, Gen [Cusumano-Towner et al. 2019] and Pyro [Bingham et al. 2019]
build on top of the AD capabilities of Tensor�ow [Abadi et al. 2016] and PyTorch [Paszke et al. 2017].

For our language to support di�erentiable models, one approach is to interpret a model into a form
suitable for use by an existing AD library. An obstacle of this is the current lack of suitable tools in
Haskell. The ad library [Kmett et al. 2010] was experimented with by Ścibior [2019], but found the
resulting models to have extremely complex types; recent work by Berg et al. [2022] provides a more
lightweight abstraction which seems promising. Alternatively, it may be possible to implement AD
using an algebraic e�ect infrastructure, perhaps building on ideas from Sigal [2021] which show how to
express AD with e�ect handlers. In all cases, we would need to investigate the set of valid operations
for models in our language that are amenable to AD.

Semantics for probabilistic programs We aim to formalise some properties of our language’s
implementation, regarding the construction of models and the semantics of handlers that execute them
during inference. For example, a restricted version of Gen [Cusumano-Towner et al. 2019] can be
characterised by the trace-based denotational semantics of Lew et al. [2019]. MonadBayes [Ścibior,
Kammar, and Ghahramani 2018] is based on the denotational semantics of Ścibior, Kammar, Vákár, et al.
[2017], which provides modular proofs that ensure every combination of monad transformers they use is
correct in producing an “unbiased sampler” for inference. It may be possible to transfer the semantics of
monad transformers to the setting of algebraic e�ects, perhaps using the work of Schrijvers et al. [2019]
that speci�es when one is expressable in terms of the other. However, our use of e�ect handlers is not
intended to correspond to the use of monads in MonadBayes, and while the algorithms we implemented
are replicated from the statistical literature, working out a semantic foundation is a substantial task.

85

Bibliography

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean, Matthieu Devin,
Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al. (2016). “Tensor�ow: a system for large-scale
machine learning.” In: OSDI. Vol. 16. 2016. Savannah, GA, USA, pp. 265–283.

Ackerman, Nathanael L, Cameron E Freer, and Daniel M Roy (2011). “Noncomputable conditional
distributions”. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science. IEEE, pp. 107–116.

Ameen, I, Dumitru Baleanu, and Hegagi Mohamed Ali (2020). “An e�cient algorithm for solving the
fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment”.
In: Chaos, Solitons & Fractals 137, p. 109892.

Andrieu, Christophe, Nando De Freitas, Arnaud Doucet, and Michael I Jordan (2003). “An introduction
to MCMC for machine learning”. In: Machine learning 50.1, pp. 5–43.

Bauer, Andrej and Matija Pretnar (2013). “An e�ect system for algebraic e�ects and handlers”. In:
International Conference on Algebra and Coalgebra in Computer Science. Springer, pp. 1–16.

Bauer, Andrej and Matija Pretnar (2015). “Programming with algebraic e�ects and handlers”. In: Journal
of Logical and Algebraic Methods in Programming 84.1. Special Issue: The 23rd Nordic Workshop on
Programming Theory (NWPT 2011) Special Issue: Domains X, International workshop on Domain
Theory and applications, Swansea, 5-7 September, 2011, pp. 108–123. issn: 2352-2208.

Beichl, Isabel and Francis Sullivan (2000). “The metropolis algorithm”. In: Computing in Science &

Engineering 2.1, pp. 65–69.
Berg, Birthe van den, Tom Schrijvers, James McKinna, and Alexander Vandenbroucke (2022). “Forward-or

Reverse-Mode Automatic Di�erentiation: What’s the Di�erence?” In: arXiv preprint arXiv:2212.11088.
Bingham, Eli, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karalet-

sos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman (2019). “Pyro: Deep Universal
Probabilistic Programming”. In: J. Mach. Learn. Res. 20, 28:1–28:6.

Borgström, Johannes, Ugo Dal Lago, Andrew D Gordon, and Marcin Szymczak (2016). “A lambda-calculus
foundation for universal probabilistic programming”. In: ACM SIGPLAN Notices 51.9, pp. 33–46.

Brady, Edwin (2013). “Programming and reasoning with algebraic e�ects and dependent types”. In:
Proceedings of the 18th ACM SIGPLAN international conference on Functional programming, pp. 133–
144.

Brady, Edwin (2021). “Idris 2: Quantitative type theory in practice”. In: arXiv preprint arXiv:2104.00480.
Carpenter, Bob, Andrew Gelman, Matthew Ho�man, Daniel Lee, Ben Goodrich, Michael Betancourt,

Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell (2017). “Stan : A Probabilistic Programming
Language”. In: Journal of Statistical Software 76.

86

Chopin, Nicolas, Pierre E Jacob, and Omiros Papaspiliopoulos (2013). “SMC2: an e�cient algorithm
for sequential analysis of state space models”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 75.3, pp. 397–426.

Colmerauer, Alain (1990). “An introduction to Prolog III”. In: Communications of the ACM 33.7, pp. 69–90.
Cranmer, Kyle, Johann Brehmer, and Gilles Louppe (2020). “The frontier of simulation-based inference”.

In: Proceedings of the National Academy of Sciences 117.48, pp. 30055–30062.
Cusumano-Towner, Marco (2020). “Gen: a high-level programming platform for probabilistic inference”.

PhD thesis. Massachusetts Institute of Technology.
Cusumano-Towner, Marco, Feras A. Saad, Alexander Lew, and Vikash Mansinghka (2019). “Gen: A

General-Purpose Probabilistic Programming System with Programmable Inference”. In: Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI
2019. Phoenix, AZ, USA: Association for Computing Machinery, pp. 221–236. isbn: 9781450367127.

Dahlin, Johan, Fredrik Lindsten, and Thomas B Schön (2015). “Particle Metropolis–Hastings using
gradient and Hessian information”. In: Statistics and computing 25.1, pp. 81–92.

Dahlqvist, Fredrik, Alexandra Silva, and William Smith (2023). “Deterministic stream-sampling for
probabilistic programming: semantics and veri�cation”. In: arXiv preprint arXiv:2304.13504.

Darlington, John, Yi-ke Guo, Hing Wing To, and Jin Yang (Aug. 1995). “Parallel Skeletons for Structured
Composition”. In: SIGPLAN Not. 30.8, pp. 19–28. issn: 0362-1340.

De Raedt, Luc, Angelika Kimmig, Hannu Toivonen, and M Veloso (2007). “ProbLog: A probabilistic
Prolog and its application in link discovery”. In: IJCAI 2007, Proceedings of the 20th international joint

conference on arti�cial intelligence. IJCAI-INT JOINT CONF ARTIF INTELL, pp. 2462–2467.
Ding, Zhenghao, Jun Li, and Hong Hao (2019). “Structural damage identi�cation using improved Jaya

algorithm based on sparse regularization and Bayesian inference”. In: Mechanical Systems and Signal

Processing 132, pp. 211–231.
Djuric, P.M., J.H. Kotecha, Jianqui Zhang, Yufei Huang, T. Ghirmai, M.F. Bugallo, and J. Miguez (2003).

“Particle �ltering”. In: IEEE Signal Processing Magazine 20.5, pp. 19–38.
Doucet, Arnaud and Adam M Johansen (2009). “A tutorial on particle �ltering and smoothing: Fifteen

years later”. In: Handbook of nonlinear �ltering 12.656-704, p. 3.
Erwig, Martin and Steve Kollmansberger (2006). “Functional Pearls: Probabilistic functional programming

in Haskell”. In: J. Funct. Program. 16.1, pp. 21–34.
Fox, Charles W and Stephen J Roberts (2012). “A tutorial on variational Bayesian inference”. In: Arti�cial

intelligence review 38.2, pp. 85–95.
Freeman, Phil (2017). PureScript by Example. url: h�ps://book.purescript.org.
Fu, Michael C. (2006). “Chapter 19 Gradient Estimation”. In: Simulation. Ed. by Shane G. Henderson and

Barry L. Nelson. Vol. 13. Handbooks in Operations Research and Management Science. Elsevier,
pp. 575–616.

Fushiki, Tadayoshi (2010). “Bayesian bootstrap prediction”. In: Journal of statistical planning and inference
140.1, pp. 65–74.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides (1995). Design patterns: elements of

reusable object-oriented software. Pearson Deutschland GmbH.

87

https://book.purescript.org

Ge, Hong, Kai Xu, and Zoubin Ghahramani (2018). “Turing: a language for �exible probabilistic inference”.
In: International Conference on Arti�cial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018,

Playa Blanca, Lanzarote, Canary Islands, Spain, pp. 1682–1690.
Gelman, Andrew, John B Carlin, Hal S Stern, and Donald B Rubin (1995). Bayesian data analysis. Chapman

and Hall.
Gelman, Andrew and Jennifer Hill (2006). Data analysis using regression and multilevel/hierarchical

models. Cambridge university press.
Gilks, Walter R and Carlo Berzuini (2001). “Following a moving target—Monte Carlo inference for

dynamic Bayesian models”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)

63.1, pp. 127–146.
Gill, Andy (2022). Monad transformer library. url: h�ps://hackage.haskell.org/package/mtl.
Giry, Michele (2006). “A categorical approach to probability theory”. In: Categorical Aspects of Topology

and Analysis: Proceedings of an International Conference Held at Carleton University, Ottawa, August

11–15, 1981. Springer, pp. 68–85.
Glynn, Peter W (1990). “Likelihood ratio gradient estimation for stochastic systems”. In: Communications

of the ACM 33.10, pp. 75–84.
Goldstein, Oliver (2019). “Modular probabilistic programming with algebraic e�ects”. Master’s thesis.

University of Edinburgh.
Goodman, Noah, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum (2012).

“Church: a language for generative models”. In: arXiv preprint arXiv:1206.3255.
Goodman, Noah and Andreas Stuhlmüller (2014). The Design and Implementation of Probabilistic Pro-

gramming Languages. url: h�p://dippl.org.
Gordon, Andrew D, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani (2014). “Probabilistic

programming”. In: Future of Software Engineering Proceedings, pp. 167–181.
Hillerström, Daniel and Sam Lindley (2016). “Liberating e�ects with rows and handlers”. In: Proceedings

of the 1st International Workshop on Type-Driven Development, pp. 15–27.
Hillerström, Daniel and Sam Lindley (2018). “Shallow e�ect handlers”. In: Asian Symposium on Program-

ming Languages and Systems. Springer, pp. 415–435.
Hol, Jeroen D, Thomas B Schon, and Fredrik Gustafsson (2006). “On resampling algorithms for particle

�lters”. In: 2006 IEEE nonlinear statistical signal processing workshop. IEEE, pp. 79–82.
Holden, Lars, Ragnar Hauge, and Marit Holden (2009). “Adaptive independent metropolis–hastings”. In:

The Annals of Applied Probability 19.1, pp. 395–413.
Idreos, Stratos, Olga Papaemmanouil, and Surajit Chaudhuri (2015). “Overview of data exploration

techniques”. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, pp. 277–281.
Kammar, Ohad, Sam Lindley, and Nicolas Oury (2013). “Handlers in action”. In: ACM SIGPLAN Notices

48.9, pp. 145–158.
Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv

preprint arXiv:1412.6980.
Kingma, Diederik P and Max Welling (2013). “Auto-encoding variational bayes”. In: arXiv preprint

arXiv:1312.6114.

88

https://hackage.haskell.org/package/mtl
http://dippl.org

Kiselyov, Oleg (2010). “Typed Tagless Final Interpreters”. In: Proceedings of the 2010 International Spring
School Conference on Generic and Indexed Programming. SSGIP’10. Oxford, UK: Springer-Verlag,
pp. 130–174. isbn: 9783642322013.

Kiselyov, Oleg and Hiromi Ishii (2015). “Freer Monads, More Extensible E�ects”. In: Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell. Haskell ’15. Vancouver, BC, Canada: Association for
Computing Machinery, pp. 94–105. isbn: 9781450338080.

Kiselyov, Oleg, Amr Sabry, and Cameron Swords (2013). “Extensible E�ects: An Alternative to Monad
Transformers”. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell. Haskell ’13. Boston,
Massachusetts, USA: Association for Computing Machinery, pp. 59–70. isbn: 9781450323833.

Kiselyov, Oleg and Chung-Chieh Shan (2009). “Embedded Probabilistic Programming”. In: Proceedings of
the IFIP TC 2Working Conference on Domain-Speci�c Languages. DSL ’09. Oxford, UK: Springer-Verlag,
pp. 360–384. isbn: 9783642030338.

Kline, Brendan and Elie Tamer (2016). “Bayesian inference in a class of partially identi�ed models”. In:
Quantitative Economics 7.2, pp. 329–366.

Kmett, Edward, Barak Pearlmutter, and Je�rey Mark Siskind (2010). ad: Automatic Di�erentiation. url:
h�ps://hackage.haskell.org/package/ad.

Kozen, Dexter (1979). “Semantics of probabilistic programs”. In: 20th Annual Symposium on Foundations

of Computer Science (sfcs 1979). IEEE, pp. 101–114.
Kucukelbir, Alp, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei (2017). “Automatic

di�erentiation variational inference”. In: Journal of machine learning research.
Leijen, Daan (2005). “Extensible records with scoped labels”. In: Proceedings of the 2005 Symposium on

Trends in Functional Programming, pp. 297–312.
Leijen, Daan (2017). “Type directed compilation of row-typed algebraic e�ects”. In: Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages, pp. 486–499.
Leroy, Xavier, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon (2020).

The OCaml system release 4.11: Documentation and user’s manual.
Levy, Paul (1999). “Call-by-push-value: A subsuming paradigm”. In: International Conference on Typed

Lambda Calculi and Applications. Springer, pp. 228–243.
Levy, Paul, John Power, and Hayo Thielecke (2003). “Modelling environments in call-by-value program-

ming languages”. In: Information and computation 185.2, pp. 182–210.
Lew, Alexander, Marco Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash Mansinghka

(2019). “Trace types and denotational semantics for sound programmable inference in probabilistic
languages”. In: Proceedings of the ACM on Programming Languages 4.POPL, pp. 1–32.

Liang, Feng and Ziyuan Li (2021). “Statistical Analysis on COVID-19 Based on SIR Model”. In: 2020
4th International Conference on Computational Biology and Bioinformatics. ICCBB 2020. Bali Island,
Indonesia: Association for Computing Machinery, pp. 14–19. isbn: 9781450388443.

Liang, Sheng, Paul Hudak, and Mark Jones (1995). “Monad Transformers and Modular Interpreters”. In:
Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’95. San Francisco, California, USA: Association for Computing Machinery, pp. 333–343. isbn:
0897916921.

Lindley, Sam and James Cheney (2012). “Row-based e�ect types for database integration”. In: Proceedings
of the 8th ACM SIGPLAN Workshop on Types in Language Design and Implementation, pp. 91–102.

89

https://hackage.haskell.org/package/ad

Lindley, Sam, Conor McBride, and Craig McLaughlin (2017). “Do Be Do Be Do”. In: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages. POPL ’17. Paris, France:
Association for Computing Machinery, pp. 500–514. isbn: 9781450346603.

Lunn, David J., Andrew Thomas, Nicky Best, and David Spiegelhalter (2000). “WinBUGS – A Bayesian
Modelling Framework: Concepts, Structure, and Extensibility”. In: Statistics and Computing 10.4,
pp. 325–337. issn: 0960-3174.

Lydia, Agnes and Sagayaraj Francis (2019). “Adagrad – an optimizer for stochastic gradient descent”. In:
Int. J. Inf. Comput. Sci 6.5, pp. 566–568.

Mansinghka, Vikash, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard
(June 2018). “Probabilistic Programming with Programmable Inference”. In: SIGPLAN Not. 53.4,
pp. 603–616. issn: 0362-1340.

Mansinghka, Vikash, Daniel Selsam, and Yura Perov (2014). “Venture: a higher-order probabilistic
programming platform with programmable inference”. In: arXiv preprint arXiv:1404.0099.

Meent, Jan-Willem van de, Brooks Paige, Hongseok Yang, and Frank Wood (2018). “An introduction to
probabilistic programming”. In: arXiv preprint arXiv:1809.10756.

Moon, Todd K (1996). “The expectation-maximization algorithm”. In: IEEE Signal processing magazine

13.6, pp. 47–60.
Moore, Dave and Maria I Gorinova (2018). “E�ect handling for composable program transformations in

Edward2”. In: arXiv preprint arXiv:1811.06150.
Myung, In Jae (2003). “Tutorial on maximum likelihood estimation”. In: Journal of mathematical Psychol-

ogy 47.1, pp. 90–100.
Narayanan, Praveen, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov (2016).

“Probabilistic Inference by Program Transformation in Hakaru”. In: International Symposium on

Functional and Logic Programming. Springer, pp. 62–79. isbn: 978-3-319-29603-6.
Nguyen, Minh, Roly Perera, Meng Wang, and Steven Ramsay (2023). “E�ect handlers for programmable

inference”. In: Proceedings of the 16th ACM SIGPLAN International Symposium on Haskell. Haskell
’23. Seattle, WA, USA: Association for Computing Machinery, pp. 44–58. isbn: 9798400702983.

Nguyen, Minh, Roly Perera, Meng Wang, and Nicolas Wu (2022). “Modular probabilistic models via
algebraic e�ects”. In: Proceedings of the ACM on Programming Languages 6.ICFP, pp. 381–410.

Paszke, Adam, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer (2017). “Automatic di�erentiation in pytorch”.

Plotkin, Gordon and John Power (2003). “Algebraic operations and generic e�ects”. In: Applied categorical
structures 11.1, pp. 69–94.

Plotkin, Gordon and Matija Pretnar (2009). “Handlers of algebraic e�ects”. In: European Symposium on

Programming. Springer, pp. 80–94.
Plotkin, Gordon and Matija Pretnar (2013). “Handling Algebraic E�ects”. In: Logical Methods in Computer

Science 9.4. Ed. by AndrzejEditor Tarlecki. issn: 1860-5974.
Polson, Nicholas G, James G Scott, and Jesse Windle (2013). “Bayesian inference for logistic models

using Pólya–Gamma latent variables”. In: Journal of the American statistical Association 108.504,
pp. 1339–1349.

Pretnar, Matija (2015). “An introduction to algebraic e�ects and handlers. invited tutorial paper”. In:
Electronic notes in theoretical computer science 319, pp. 19–35.

90

Rabiner, L. and B. Juang (1986). “An introduction to hidden Markov models”. In: IEEE ASSP Magazine

3.1, pp. 4–16.
Ranganath, Rajesh, Sean Gerrish, and David Blei (2014). “Black box variational inference”. In: Arti�cial

intelligence and statistics. PMLR, pp. 814–822.
Rémy, Didier (1994). “Type inference for records in a natural extension of ML”. In: Theoretical aspects of

object-oriented programming, pp. 67–96.
Salvatier, John, Thomas V Wiecki, and Christopher Fonnesbeck (2016). “Probabilistic programming in

Python using PyMC3”. In: PeerJ Computer Science 2, e55.
Schrijvers, Tom, Maciej Piróg, Nicolas Wu, and Mauro Jaskelio� (2019). “Monad Transformers and

Modular Algebraic E�ects: What Binds Them Together”. In: Haskell 2019, pp. 98–113.
Ścibior, Adam (2019). “Formally justi�ed and modular Bayesian inference for probabilistic programs”.

PhD thesis. University of Cambridge.
Ścibior, Adam, Zoubin Ghahramani, and Andrew D. Gordon (2015). “Practical Probabilistic Program-

ming with Monads”. In: Proceedings of the 2015 ACM SIGPLAN Symposium on Haskell. Haskell ’15.
Vancouver, BC, Canada: Association for Computing Machinery, pp. 165–176. isbn: 9781450338080.

Ścibior, Adam and Ohad Kammar (2015). “E�ects in Bayesian inference”. In: Workshop on Higher-Order

Programming with E�ects (HOPE).
Ścibior, Adam, Ohad Kammar, and Zoubin Ghahramani (2018). “Functional Programming for Modular

Bayesian Inference”. In: Proc. ACM Program. Lang. 2.ICFP.
Ścibior, Adam, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok Yang, Yufei Cai, Klaus Ostermann,

Sean K Moss, Chris Heunen, and Zoubin Ghahramani (2017). “Denotational validation of higher-order
Bayesian inference”. In: arXiv preprint arXiv:1711.03219.

Shi, Hongjing, Zhisheng Duan, and Guanrong Chen (2008). “An SIS model with infective medium on
complex networks”. In: Physica A: Statistical Mechanics and its Applications 387.8-9, pp. 2133–2144.

Sigal, Jesse (2021). “Automatic di�erentiation via e�ects and handlers: An implementation in Frank”. In:
arXiv preprint arXiv:2101.08095.

Snyder, Chris, Thomas Bengtsson, and Mathias Morzfeld (2015). “Performance Bounds for Particle Filters
Using the Optimal Proposal”. In: Monthly Weather Review 143.11, pp. 4750–4761.

Swierstra, Wouter (2008). “Data types à La Carte”. In: J. Funct. Program. 18.4, pp. 423–436. issn: 0956-7968.
Tokuda, Lance and Don Batory (2001). “Evolving object-oriented designs with refactorings”. In: Auto-

mated Software Engineering 8.1, pp. 89–120.
Tolpin, David, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood (2016). “Design and Imple-

mentation of Probabilistic Programming Language Anglican”. In: Proceedings of the 28th Symposium

on the Implementation and Application of Functional Programming Languages. IFL 2016. Leuven,
Belgium: Association for Computing Machinery. isbn: 9781450347679.

Vidal, Germán (2022). “Explanations as Programs in Probabilistic Logic Programming”. In: International
Symposium on Functional and Logic Programming. Springer, pp. 205–223.

Voigtländer, Janis (2008). “Asymptotic improvement of computations over free monads”. In: International
Conference on Mathematics of Program Construction. Springer, pp. 388–403.

Wingate, David, Andreas Stuhlmueller, and Noah Goodman (2011). “Lightweight Implementations of
Probabilistic Programming Languages Via Transformational Compilation”. In: Proceedings of the
Fourteenth International Conference on Arti�cial Intelligence and Statistics. Ed. by Geo�rey Gordon,

91

David Dunson, and Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort
Lauderdale, FL, USA: PMLR, pp. 770–778.

Wingate, David and Theophane Weber (2013). “Automated variational inference in probabilistic pro-
gramming”. In: arXiv preprint arXiv:1301.1299.

Wu, Nicolas and Tom Schrijvers (2015). “Fusion for Free E�cient Algebraic E�ect Handlers”. In: Springer-
Verlag Berlin, pp. 302–322.

Yang, Yi, Ana Milanova, and Martin Hirzel (2022). “Complex Python features in the wild”. In: Proceedings
of the 19th International Conference on Mining Software Repositories, pp. 282–293.

Yekutieli, Daniel (2012). “Adjusted Bayesian inference for selected parameters”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 74.3, pp. 515–541.

Zhang, Cheng, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt (2018). “Advances in variational
inference”. In: IEEE transactions on pattern analysis and machine intelligence 41.8, pp. 2008–2026.

92

APPENDIXA
Implementation: Elaborated definitions

−− | Auxiliary lifting functions
li�Call :: e ∈ es⇒ e a→ MulModel env es a
li�Call op = MulModel (call op)

li�Handler :: Handler e es a b → MulModel env (e:es) a → MulModel env es b
li�Handler hdl (MulModel m) = MulModel (hdl m)

−− | SIR model extended with the Writer e�ect
transB8A :: Writer [Population] ∈ es⇒ TransModel env es TransParams Population
transB8A (TransParams V W) B8A = do
B8A ′← (transB8 V >=> trans8A W) B8A
li�Call (Tell [B8A ′])
return B8A ′

hmm′B8A :: (Conditionable env "b" Int, Conditionables env ["V" , "W" , "d"] Double)
⇒ Int→ Population→ MulModel env es (Population, [Population])

hmm′B8A C = (li�Handler handleWriter) ◦ hmmB8A C

Figure A.1: Section 3.4.3 – Lifting operation calls and handlers (de�ned in Section 2.3) from Comp to
MulModel

−− | Top− level Single - Site Metropolis -Hastings over a multimodal model
ssmhWith :: Int

→ MulModel env [EnvRW env, MulDist, Observe, Sample, IO] a
→ Env env
→ IO [(a, Env env)]

ssmhWith n mulmodel env = do
let model = conditionWith env mulmodel

g0 = Map.empty
rs :: [((a , Env env), (LPTrace, Trace))] ← ssmh n g0 model
return (map fst rs)

Figure A.2: Section 3.4.4 – Lifting ssmh (de�ned in Section 5.2.2) from Model to MulModel

93

APPENDIXB
Formal calculus: Theorem proofs

Inductive hypothesis (IH). Implies that (⇒).

B.1 Proof of Theorem (Determinism)

Suppose d̃ and " are well-typed.

If d̃, " L
{ d̃1, "1 and d̃, " L

{ d̃2, "2 then d̃1 = d̃2 and "1 = "2.

Proof of Determinism. Suppose " is well-typed.

d̃, "
L
{ d̃1, "1 ∧ d̃, "

L
{ d̃2, "2

⇒ ∃E[#] . " ∼ E[#] lift

From Unique decomposition, E[#] is the unique decomposition of " .

Then:

d̃, E[#] L
{ d̃1, E[#1] ∧ d̃, E[#] L

{ d̃2, E[#2]

⇒ d̃, # { d̃1, #1 ∧ d̃, # { d̃2, #2 lift

As we only have a single reduction rule ({) per d̃ and redex # in Fig. 4.10, d̃1 = d̃2 and #1 = #2.

Then "1 = E[#1]

= E[#2]

= "2

�

B.1.1 Proof of Lemma (Unique decomposition)

Suppose " is well-typed.
If " ∼ E[#] and " ∼ E ′[# ′], then E = E ′ and # = # ′.

Proof of Uniqe decomposition. Suppose " is well-typed and " ∼ E[#] and " ∼ E ′[# ′]. We

94

proceed by induction on the well-typed forms of " , and inversion on " ∼ E[#] and " ∼ E ′[# ′].

..

Case " = return + .
The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex(return +) ⇒ ⊥

return + ∼ [return +]

but # = return + is not a redex, so this decomposition is impossible. A similar case holds for
" ∼ E ′[# ′].

..

Case " = G + .
The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex(G +) ⇒ ⊥

G + ∼ [G +]

but # = G + is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

..

Case " = (_G. " ′)+ .

The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex((_G. " ′)+)

(_G ." ′)+ ∼ [(_G. " ′)+]

A similar case holds for " ∼ E ′[# ′] where E ′ = [] and # ′ = " . By transitivity, E = E ′ and # = # ′.

..

Case " = (ΛU." ′) [)].
The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex((ΛU." ′) [)])

(ΛU." ′) [)] ∼ [(ΛU." ′) [)]]

A similar case holds for " ∼ E ′[# ′] where E ′ = [] and # ′ = " . By transitivity, E = E ′ and # = # ′.

95

..

Case " = op+ .

The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex(op+) ⇒ ⊥

op+ ∼ [op+]

but # = op+ is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

..

Case " = q + .

The only decomposition of " ∼ E[#] we can consider is where E = [] and # = " :

redex(q +) ⇒ ⊥

q + ∼ [q +]

but # = q + is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

..

Case " = let G ← return + in " ′.

Subcase If " ∼ E[#] is of the form E = [] and # = " :

redex(let G ← return + in " ′)

let G ← return + in " ′ ∼ [let G ← return + in " ′]

and similarly if " ∼ E ′[# ′] where E ′ = [] and # ′ = " , then by transitivity E = E ′ and # = # ′

Subcase If " ∼ E[#] is of the form E = let G ← [] in " ′ and # = return + :

redex(return +) ⇒ ⊥

return + ∼ [return +]

let G ← return + in " ′ ∼ let G ← [return +] in " ′

then return + is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

96

..

Case " = let G ← "1 in "2 where "1 ≠ return + .

Subcase If " ∼ E[#] is of the form E = [] and # = " :

redex(let G ← "1 in "2) ⇒ ⊥

let G ← "1 in "2 ∼ [let G ← "1 in "2]

then # = let G ← "1 in "2 is not a redex as "1 ≠ return + , so this decomposition is impossible. A
similar case holds for " ∼ E ′[# ′].

Subcase If " ∼ E[#] is of the form where E = let G ← E0 in "2:

"1 ∼ E0 [#]

let G ← "1 in "2 ∼ let G ← E0 [#] in "2

and similarly if " ∼ E ′[# ′] is of the form where E ′ = let G ← E ′0 in "2

"1 ∼ E ′0 [# ′]

let G ← "1 in "2 ∼ let G ← E ′0 [# ′] in "2

By IH on "1, we have by transitivity that E0 = E ′0 and # = # ′. (IH)
Then E = let G ← E0 in "2

= let G ← E ′0 in "2

= E ′

..

Case " = let G ∼ q + in "

The only decomposition of " ∼ E[#] we can consider is where E = [] and # = "

redex(let G ∼ q + in ")

let G ∼ q + in " ∼ [let G ∼ q + in "]

A similar case holds for " ∼ E ′[# ′] where E ′ = [] and # ′ = " . By transitivity, E = E ′ and # = # ′.

97

..

Case " = with � handle (return +)

Subcase If " ∼ E[#] is of the form E = [] and # = " :

redex(with � handle (return +))

with � handle (return +) ∼ [with � handle (return +)]

and similarly if " ∼ E ′[# ′] where E ′ = [] and # ′ = " , then by transitivity E = E ′ and # = # ′.

Subcase If " ∼ E[#] is of the form E = with � handle [] and # = return + :

redex(return +) ⇒ ⊥

return + ∼ [return +]

with � handle (return +) ∼ with � handle [return +]

then return + is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

..

Case " = with � handle E0 [op+]

Subcase If " ∼ E[#] is of the form E = [] and # = " :

redex(with � handle E0 [op+])

with � handle E0 [op+] ∼ [with � handle E0 [op+]]

and similarly if " ∼ E ′[# ′] where E ′ = [] and # ′ = " , then by transitivity E = E ′ and # = # ′.

Subcase If " ∼ E[#] is of the form E = with � handle [] and # = return + :

redex(return +) ⇒ ⊥

return + ∼ [return +]

with � handle (return +) ∼ with � handle [return +]

then return + is not a redex, so this decomposition is impossible. A similar case holds for " ∼ E ′[# ′].

98

..

Case " = with � handle " ′ where " ′ ≠ return + and " ′ ≠ E0 [op+]

Subcase If " ∼ E[#] is of the form E = [] and # = " :

redex(with � handle " ′) ⇒ ⊥

with � handle " ′ ∼ [with � handle " ′]

then# = with � handle " ′ is not a redex as" ′ ≠ return + and" ′ ≠ E0 [op+], so this decomposition
is impossible. A similar case holds for " ∼ E ′[# ′].

Subcase If " ∼ E[#] is of the form where E = with � handle E0:

" ′ ∼ E0 [#]

with � handle " ′ ∼ with � handle E0 [#]

and similarly if " ∼ E ′[# ′] is of the form where E ′ = with � handle E ′0

" ′ ∼ E ′0 [# ′]

with � handle " ′ ∼ with � handle E ′0 [# ′]

By IH on " ′, we have by transitivity that E0 = E ′0 and # = # ′. (IH)
Then E = with � handle E0

= with � handle E ′0
= E ′

�

B.2 Proof of Theorem (Progress)

Suppose Y; Y ` d̃1 : Ω and Y; Y;Ω ` "1 : � .

Then "1 is in canonical form, or ∃"2. d̃1, "1
L
{ d̃2, "2.

Proof of Progress. Suppose Y; Y ` d̃1 : Ω and Y; Y;Ω ` "1 : � . We proceed by induction on the
typing derivation for "1.

..

Case
return

Y; Y;Ω ` + : �

Y; Y;Ω ` return + : � !'

⇒ return + is in canonical form.

99

..

Case
application
Y; Y;Ω ` +1 : �→ � Y; Y;Ω′ ` +2 : �

Y; Y;Ω] Ω′ ` +1+2 : �

Subcase +1 = G var

⇒ This is impossible as +1 is closed.

Subcase +1 = _G : �." function

⇒ d̃, (_G : �.")+2 { d̃, " [G ↦→ +2] app

⇒ d̃, [(_G : �.")+2]
L
{ d̃, [" [G ↦→ +2]] lift

..

Case
type application

Y; Y;Ω ` + : ∀U : . � Y `) :

Y; Y;Ω ` + [)] : � [U ↦→)]

Subcase + = G var

⇒ This is impossible as + is closed.

Subcase + = (ΛU : .") type abstraction

⇒ d̃, (ΛU : .") [)] { d̃, " [U ↦→)] ty-app

⇒ d̃, [(ΛU : .") [)]] L
{ d̃, [" [U ↦→)]] lift

..

Case
operation call
op : �→ � ∈ � Y; Y;Ω ` + : �

Y; Y;Ω ` op + : � ! (�;')

⇒ op + is in canonical form E[op +] where op ∉ Handled(E), where E = [·] .

..

Case
distribution call
q : �→ � ∈ Φ Y; Y;Ω ` + : �

Y; Y;Ω ` q + : � ! (Dist;')

⇒ d̃, q + { d̃, distq (+ , Nothing) dist call

⇒ d̃, [q +] L
{ d̃, [distq (+ , Nothing)] lift

100

..

Case
let-bind
Y; Y;Ω ` " : � !' Y; Y · (G : �);Ω′ ` # : � !'

Y; Y;Ω] Ω′ ` let G ← " in # : � !'

Subcase " = return + return

⇒ d̃, let G ← return + in # { d̃, # [G ↦→ +] let-bind (ret)

⇒ d̃, [let G ← return + in #] L
{ d̃, [# [G ↦→ +]] lift

Subcase " = E ′[op+] ∧ op ∉ Handled(E ′)

⇒ let G ← E ′[op+] in # is in canonical form E[op+] where E = let G ← E ′ in # and op ∉ Handled(E)

Subcase " = E ′[op+] ∧ op ∈ Handled(E ′)

Then E’ can be re�ned into an innermost handle statement that can handle op :

⇒ ∃E, E0, �,"0. E ′[op+] = E[with � handle E0 [op+]]

where {opG0 :0 → "0} ∈ � ∧ op ∉ Handled(E0) Handled

⇒ d̃, with � handle E0 [op+]

{ d̃, "0 [G0 ↦→ + , :0 ↦→ _~. with � handle E0 [return ~]] handle (op)

⇒ d̃, E[with � handle E0 [op+]]
L
{ d̃, E["0 [G0 ↦→ + , :0 ↦→ _~. with � handle E0 [return ~]]] lift

⇒ d̃, let G ← E[with � handle E0 [op+]] in #
L
{ d̃ ′, let G ← E["0 [G0 ↦→ + , :0 ↦→ _~. with � handle E0 [return ~]]] in # lift

Subcase " ≠ return + and " ≠ E ′[op+]

" is not in canonical form, so:

⇒ ∃" ′. d̃, " L
{ d̃ ′, " ′ (IH)

⇒ d̃, E["0]
L
{ d̃ ′, E[" ′0] where " = E["0] ∧ " ′ = E[" ′0] ∧ d̃, "0 { d̃ ′, " ′0 lift

⇒ d̃, let G ← E["0] in #
L
{ d̃ ′, let G ← E[" ′0] in # lift

..

Case
let-bind (∼)
q : �→ � ∈ Φ Y; Y;Ω ` + : � Y; Y · (G : �);Ω′ ` " : � ! (Dist;')

Y; Y;Ω] Ω′ · (G̃ : �) ` let G̃ ∼ q + in " : � ! (Dist;')

The context Ω] Ω′ · (G̃ : �) implies the model environment has the form d̃ · (G̃ : *).

⇒ d̃ · (G̃ : *), let x̃ ∼ q + in " { d̃ · (G̃ : * ′), let G ← distq (+ ,+ ′) in " let-bind (∼)

where (+ ′,* ′) = * !

⇒ d̃ · (G̃ : *), [let x̃ ∼ q + in "] L
{ d̃ · (G̃ : * ′), [let G ← distq (+ ,+ ′) in "] lift

101

..

Case
handle
Y; Y ` � : � ! (�;') ⇒� � !' Y; Y;Ω ` " : � ! (�;')

Y; Y;Ω ` with � handle " : � !'

Subcase " = return + where return G → " ′ ∈ � ′

⇒ d̃, with � handle (return +) { d̃, " ′[G ↦→ +] handle (ret)

Subcase " = return + where return G → " ′ ∉ �

This case is impossible, as handlers without return clauses are syntactically ill-formed.

Subcase " = E[op+] where op G : → " ′ ∈ � ∧ op ∉ Handled(E)

⇒ d̃, with � handle E[op +]

{ d̃, " ′[G ↦→ + , : ↦→ _~. with � handle E[return ~]] handle (op)

⇒ d̃, [with � handle E[op +]]
L
{ d̃, [" ′[G ↦→ + , : ↦→ _~. with � handle E[return ~]]] lift

Subcase " = E[op+] where op G : → " ′ ∉ � ∧ op ∉ Handled(E)

⇒ with � handle E[op+] is in canonical form E0 [op+] where E0 = with � handle E and op ∉ Handled(E0)

Subcase " = E[op+] where op ∈ Handled(E)

Then E can be re�ned into an innermost handle statement that can handle op:

⇒ ∃� ′, E0, E1. E[op+] = E0 [with � ′ handle E1 [op +]] Handled

∧ op G : → " ′ ∈ � ′

∧ op ∉ Handled(E1)

⇒ d̃, with � ′ handle E1 [op +]

{ d̃, " ′[G ↦→ + , : ↦→ _~. with � ′ handle E1 [return ~]] handle (op)

⇒ d̃, E0 [with � ′ handle E1 [op +]]
L
{ d̃ ′, E0 [" ′[G ↦→ + , : ↦→ _~. with � ′ handle E1 [return ~]]] lift

⇒ d̃, with � handle E0 [with � ′ handle E1 [op +]]
L
{ d̃ ′, with � handle E0 [" ′[G ↦→ + , : ↦→ _~. with � ′ handle E1 [return ~]]] lift

Subcase " ≠ return + and " ≠ E[op+]

" is not in canonical form, so:

⇒ ∃" ′. d̃, " L
{ d̃ ′, " ′ (IH)

⇒ d̃, E["0]
L
{ d̃ ′, E[" ′0] where " = E["0] ∧ " ′ = E[" ′0] ∧ d̃, "0 { d̃ ′, " ′0 lift

⇒ d̃, with � handle E["0]
L
{ d̃ ′, with � handle E[" ′0] lift

�

102

B.3 Proof of Theorem (Type preservation)

Suppose Y; Y; ` d̃ : Ω and Y; Y;Ω ` " : � .

If d̃, " L
{ d̃ ′, " ′, then Y; Y; ` d̃ ′ : Ω and Y; Y;Ω ` " ′ : � .

Proof of Type preservation. Suppose Y; Y; ` d̃ : Ω and Y; Y;Ω ` " : � .

d̃, "
L
{ d̃ ′, " ′

⇒ d̃, E[#] L
{ d̃ ′, E[# ′] where " = E[#] ∧ " ′ = E[# ′] ∧ d̃, # { d̃ ′, # ′ lift

Suppose Y; Y;Ω ` # : �

By Type preservation of{, we have that Y; Y; ` d̃ ′ : Ω and Y; Y;Ω ` # ′ : �

By Context invariance, we have that Y; Y;Ω ` E[# ′] : �

�

B.3.1 Proof of Theorem (Type preservation of{)

Suppose Y; Y; ` d̃ : Ω and Y; Y;Ω ` " : � .
If d̃, " { d̃ ′, " ′, then Y; Y; ` d̃ ′ : Ω and Y; Y;Ω ` " ′ : � .

Proof of Type preservation of{. Suppose Y; Y; ` d̃ : Ω and Y; Y;Ω ` " : � and d̃, " { d̃ ′, " ′.
We proceed by induction on the reduction rules for d̃, " :

..

Case d̃, (_G : �.") + { d̃, " [G ↦→ +]. app

Y; Y · (G : �);Ω ` " : � Y; Y;Ω′ ` + : �

Y; Y;Ω] Ω′ ` (_G : �.")+ : �
application

⇒ Y; Y;Ω] Ω′ ` " [G ↦→ +] : � (Value substitution)

..

Case d̃, (ΛU : .") [)] { d̃, " [U ↦→)]

Y · (U :); Y;Ω ` " : � Y `) :

Y; Y;Ω ` (ΛU : .") [)] : � [U ↦→)]
type application

⇒ Y; Y;Ω ` " [U ↦→)] : � [U ↦→)] (Type substitution)

103

..

Case d̃, let G ← return + in " { d̃, " [G ↦→ +]

Y; Y;Ω ` + : �

Y; Y;Ω ` return + : � !'
return

Y; Y · (G : �);Ω′ ` " : � !'

Y; Y;Ω] Ω′ ` let G ← return + in " : � !'
let-bind

⇒ Y; Y;Ω] Ω′ ` " [G ↦→ +] : � !' (Value substitution)

..

Case
d̃ · (G̃ : *), let G̃ ∼ q + in " { d̃ · (G̃ : * ′), let G ← distq (+ ,+ ′) in "

where (+ ′,* ′) = * !

model env (non-empty)

Y; Y ` d̃ : Ω Y; Y; Y ` * : List �

Y; Y ` d̃ · (G̃,*) : Ω · (G̃ : �)

∧
let-bind (obs)
q : �→ � ∈ Φ Y; Y;Ω ` + : � Y; Y · (G : �);Ω′ ` " : � ! (Dist;')

Y; Y;Ω] Ω′ · (G̃ : �) ` let G̃ ∼ q + in " : � ! (Dist;')

By De�nition (!), we have that Y; Y; Y ` + ′ : Maybe � and Y; Y; Y ` * ′ : List �.

Then for preservation of environments:

Y; Y ` d̃ : Ω Y; Y; Y ` * ′ : List �

Y; Y ` d̃ · (G̃,* ′) : Ω · (G̃ : �)
model env (non-empty)

And for preservation of computations:

q : �→ � ∈ Φ

distq : � × Maybe � → � ∈ Dist Y; Y;Ω ` + : � Y; Y; Y ` + ′ : Maybe �

Y; Y;Ω ` distq (+ ,+ ′) : � ! (Dist;')
operation call

Y; Y · (G : �);Ω′ ` " : � ! (Dist;')

Y; Y;Ω] Ω′ · (G̃ : �) ` let G ← distq (+ ,+ ′) in " : � ! (Dist;')
let-bind

104

..

Case d̃, q + { d̃, distq (+ , Nothing)

distribution call
q : �→ � ∈ Φ Y; Y;Ω ` + : �

Y; Y;Ω ` q + : � ! (Dist;')

⇒
q : �→ � ∈ Φ

distq : � × Maybe � → � ∈ Dist Y; Y;Ω ` + : � Y; Y; Y ` Nothing : Maybe �

Y; Y;Ω ` distq (+ , Nothing) : � ! (Dist;')
operation call

..

Case
d̃, with � handle (return +) { d̃, " [G ↦→ +]

where return G → " ∈ �

Y; Y · (G : �); Y ` " : � !'[
Y; Y · (G8 : �8) · (:8 : �8 → � !'); Y ` "8 : � !'

]
∀op8 :�8→�8 ∈ �

Y; Y ` {return G → "}] {op8 G8 :8 → "8 } : � ! (�;') ⇒� � !'
handler

Y; Y;Ω ` + : �

Y; Y;Ω ` return + : � ! (�;')
return

Y; Y;Ω ` with {return G → "}] {op8 G8 :8 → "8 } handle (return +) : � !'
handle

⇒ Y; Y;Ω ` " [G ↦→ +] : � !' (Value substitution)

105

..

Case

d̃, with � handle E[op +] { d̃, " [G ↦→ + , : ↦→ _~. with � handle E[return ~]]
where op G : → " ∈ �
∧ op ∉ Handled(E)

� = {op : �op → �op}] � ′

Y; Y · (G : �op) · (: : �op → � !'); Y ` " : � !'
Y; Y ` � ′ : � ! (� ′;') ⇒�′ � !'

Y; Y ` {op G : → "}] � ′ : � ! (�;') ⇒� � !'
handler

Y; Y;Ω ` E[op+] : � ! (�;')

Y; Y;Ω ` with {op G : → "}] � ′ handle E[op+] : � !'
handle

(B.1)

• Given Y; Y;Ω ` E[op+], there must exist a decomposition Ω = Ω1] Ω2 such that Y; Y;Ω2 ` op+ .

Suppose any such Ω1,Ω2:

Y; Y;Ω1] Ω2 ` E[op+] : � ! (�;') (B.2)

∧
� = {op : �op → �op}] � ′

op : �op → �op ∈ � Y; Y;Ω2 ` + : �op

Y; Y;Ω2 ` op+ : �op ! (�;')
operation call

(B.3)

• Next, we also have that:

~ : �op ∈ Y · (~ : �op)

Y; Y · (~ : �op); Y ` ~ : �op
var

Y; Y · (~ : �op); Y ` return ~ : �op ! (�;')
return

(B.4)

By context invariance over E[op+] from (B.2) where we plug in (B.4) for (B.3), we have:

Y; Y · (~ : �op);Ω1 ` E[return ~] : � ! (�;')
(B.2, B.3, B.4,
Context invariance)

We can then derive the type of the continuation as:

Y; Y ` � : � ! (�;') ⇒� � !' Y; Y · (~ : �op);Ω1 ` E[return ~] : � ! (�;')

Y; Y · (~ : �op);Ω1 ` with � handle E[return ~] : � !'

Y; Y;Ω1 ` _~. with � handle E[return ~] : �op → � !'
function

handle (B.5)

Finally, by substitution of (B.3) and (B.5) into " from (B.1), we have:

Y; Y · (G : �op) · (: : �op → � !'); Y ` " : � !' (B.1)

⇒ Y; Y · (: : �op → � !');Ω2 ` " [G ↦→ +] : � !'
(B.3
Value substitution)

⇒ Y; Y;Ω1] Ω2 ` " [G ↦→ + , : ↦→ _~. with � handle E[return ~]] : � !'
(B.5,
Value substitution)

⇒ Y; Y;Ω ` " [G ↦→ + , : ↦→ _~. with � handle E[return ~]] : � !'

106

�

Value + ,* ::= ...

draw (q +1) +2 draw

Computation ", # ::= ...

match + as {Just G → "1, Nothing→ "2} match (maybe)
match + as {G :: GB → "1, Nil→ "2} match (list)

(a) Syntax

Δ; Γ;Ω ` + : �

draw
q : �→ � ∈ Φ Δ; Γ;Ω1 ` +1 : � Δ; Γ;Ω2 ` +2 : Double 0 ≤ +2 ≤ 1

Δ; Γ;Ω1] Ω2 ` draw (q +1) +2 : �

Δ; Γ;Ω ` " : �

match (maybe)
Δ; Γ;Ω1 ` + : List �

Δ; Γ · (G : �) · (GB : List �);Ω2 ` "1 : � !' Δ; Γ · (G : �) · (GB : List �);Ω2 ` "2 : � !'
Δ; Γ;Ω1] Ω2 ` match + as {G :: GB → "1, Nil→ "2} : � !'

match (list)
Δ; Γ;Ω1 ` + : Maybe � Δ; Γ · (G : �);Ω2 ` "1 : � !' Δ; Γ · (G : �);Ω2 ` "2 : � !'

Δ; Γ;Ω1] Ω2 ` match + as {Just G → "1, Nothing→ "2} : � !'

(b) Type rules

d̃, " { d̃ ′, " ′

match (just) d̃, match Just + as {Just G → "1, Nothing→ "2}
{ d̃, "1 [G ↦→ +]

match (nothing) d̃,match Nothing as {Just G → "1, Nothing→ "2}
{ d̃, "2

match (cons) d̃, match +1 :: +2 as {G :: GB → "1, Nil→ "2}
{ d̃, "1 [G ↦→ +1, GB ↦→ +2]

match (nil) d̃, match Nil as {G :: GB → "1, Nil→ "2}
{ d̃, "2

(c) Small-step operational semantics

Figure B.1: Extended calculus with match-as and draw. The semantics for draw is omitted, being speci�c
to each possible primitive distribution q .

107

	Introduction
	Bayesian modelling in practice
	Bayesian inference in practice
	Thesis outline and contributions

	Language Overview and Background
	Probabilistic modelling
	Multimodal models

	Probabilistic inference
	Inference patterns and pattern instances

	Algebraic effects and effect handlers
	Implementing effectful computations
	Example: defining and using effects
	Implementing effect handlers
	Example: defining and using effect handlers

	Related work

	I Effects and Effect Handlers for Probabilistic Modelling
	A Language for Multimodal Models
	Embedding of multimodal models
	Effect: multimodal distributions
	Effect: model environment reading
	User-interface for writing multimodal models

	Model environments
	Semantics for multimodal models
	Effect handler: reading from model environments
	Effect handler: multimodal distributions
	Conditioning multimodal models to concrete models
	Effect handlers for executing models

	A case study in modular, multimodal models
	The SIR model for epidemic modelling
	Extending the SIR model with new behaviours
	Extending the SIR model with additional effects
	Exploring multimodality in the SIR model

	Qualitative evaluation and related work
	Approaches for implementing probabilistic models
	Other related work

	A Formal Calculus for Multimodal Models
	Syntax
	Type syntax
	Term syntax

	Kinding
	Typing
	Model environment types
	Value types
	Operation types
	Computation types
	Handler types
	Opening and closing row types

	Semantics
	Formal properties

	Example: linear regression
	Related work
	Calculi for algebraic effect oriented programming
	Formalising row types for model environments

	II Effects and Effect Handlers for Probabilistic Inference
	A Framework for Programmable Inference
	Inference patterns
	Inference patterns
	Pattern instances

	Inference pattern: Metropolis-Hastings
	Pattern instance: Independence Metropolis
	Pattern instance: Single-Site Metropolis-Hastings

	Inference pattern: Particle Filter
	Pattern instance: Multinomial Particle Filter
	Pattern instance: Resample-Move Particle Filter
	Pattern instance: Particle Metropolis-Hastings

	Inference pattern: Guided Optimisation
	Guided models
	Inference pattern: Guided Optimisation
	Pattern instance: Black Box Variational Inference

	Performance evaluation
	Qualitative comparison and related work
	Dynamically typed approaches
	Monad transformer approach: MonadBayes
	Other related work

	Conclusion
	Future work and discussion

	Implementation: Elaborated definitions
	Formal calculus: Theorem proofs
	Proof of Theorem (Determinism)
	Proof of Lemma (Unique decomposition)

	Proof of Theorem (Progress)
	Proof of Theorem (Type preservation)
	Proof of Theorem (Type preservation of)

